link.springer.com Open in urlscan Pro
151.101.64.95  Public Scan

Submitted URL: https://doi.org/10.1007/s12371-022-00646-3
Effective URL: https://link.springer.com/article/10.1007/s12371-022-00646-3
Submission: On February 09 via manual from GR — Scanned from DE

Form analysis 4 forms found in the DOM

POST https://order.springer.com/public/precheckout

<form action="https://order.springer.com/public/precheckout" method="post"> <button class="c-header__link" type="submit" style="
        appearance: none;
        border: none;
        background: none;
        color: inherit;
    ">
    <svg aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" style="vertical-align: text-bottom;" xmlns="http://www.w3.org/2000/svg">
      <path
        d="m5 14c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm10 0c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm-10 1c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1 1-.4477153 1-1-.44771525-1-1-1zm10 0c-.5522847 0-1 .4477153-1 1s.4477153 1 1 1 1-.4477153 1-1-.4477153-1-1-1zm-12.82032249-15c.47691417 0 .88746157.33678127.98070211.80449199l.23823144 1.19501025 13.36277974.00045554c.5522847.00001882.9999659.44774934.9999659 1.00004222 0 .07084994-.0075361.14150708-.022474.2107727l-1.2908094 5.98534344c-.1007861.46742419-.5432548.80388386-1.0571651.80388386h-10.24805106c-.59173366 0-1.07142857.4477153-1.07142857 1 0 .5128358.41361449.9355072.94647737.9932723l.1249512.0067277h10.35933776c.2749512 0 .4979349.2228539.4979349.4978051 0 .2749417-.2227336.4978951-.4976753.4980063l-10.35959736.0041886c-1.18346732 0-2.14285714-.8954305-2.14285714-2 0-.6625717.34520317-1.24989198.87690425-1.61383592l-1.63768102-8.19004794c-.01312273-.06561364-.01950005-.131011-.0196107-.19547395l-1.71961253-.00064219c-.27614237 0-.5-.22385762-.5-.5 0-.27614237.22385763-.5.5-.5zm14.53193359 2.99950224h-13.11300004l1.20580469 6.02530174c.11024034-.0163252.22327998-.02480398.33844139-.02480398h10.27064786z"
        fill="#333"></path>
    </svg><span class="u-screenreader-only visually-hidden">Go to cart</span></button>
</form>

GET /search

<form role="search" method="GET" action="/search">
  <label for="search" class="app-search__label">Search SpringerLink</label>
  <div class="app-search__content">
    <input id="search" class="app-search__input" data-search-input="" autocomplete="off" role="textbox" name="query" type="text" value="">
    <button class="app-search__button" type="submit">
      <span class="u-visually-hidden">Search</span>
      <svg class="u-icon" aria-hidden="true" focusable="false">
        <use xlink:href="#global-icon-search"></use>
      </svg>
    </button>
    <input type="hidden" name="searchType" value="publisherSearch">
  </div>
</form>

POST https://order.springer.com/public/checkout

<form action="https://order.springer.com/public/checkout" method="post">
  <input type="hidden" name="type" value="article">
  <input type="hidden" name="doi" value="10.1007/s12371-022-00646-3">
  <input type="hidden" name="isxn" value="1867-2485">
  <input type="hidden" name="contenttitle" value="The Geological Heritage and Sustainable Development Proposed for the Project Geopark: an Example from Gabal Qatrani, Fayoum Depression, Western Desert, Egypt">
  <input type="hidden" name="copyrightyear" value="2022">
  <input type="hidden" name="year" value="2022">
  <input type="hidden" name="authors" value="Ezz El Din Abdel Hakim Khalaf, Gebely Abu El-Kheir">
  <input type="hidden" name="title" value="Geoheritage">
  <input type="hidden" name="mac" value="39C1ABF7DC54157048F554DC25C3F959">
  <input type="submit" class="c-box__button"
    onclick="dataLayer.push({&quot;event&quot;:&quot;addToCart&quot;,&quot;ecommerce&quot;:{&quot;currencyCode&quot;:&quot;EUR&quot;,&quot;add&quot;:{&quot;products&quot;:[{&quot;name&quot;:&quot;The Geological Heritage and Sustainable Development Proposed for the Project Geopark: an Example from Gabal Qatrani, Fayoum Depression, Western Desert, Egypt&quot;,&quot;id&quot;:&quot;1867-2485&quot;,&quot;price&quot;:37.4,&quot;brand&quot;:&quot;Springer Berlin Heidelberg&quot;,&quot;category&quot;:&quot;Earth Sciences&quot;,&quot;variant&quot;:&quot;ppv-article&quot;,&quot;quantity&quot;:1}]}}});"
    value="Buy article PDF">
</form>

POST https://order.springer.com/public/checkout

<form action="https://order.springer.com/public/checkout" method="post">
  <input type="hidden" name="type" value="article">
  <input type="hidden" name="doi" value="10.1007/s12371-022-00646-3">
  <input type="hidden" name="isxn" value="1867-2485">
  <input type="hidden" name="contenttitle" value="The Geological Heritage and Sustainable Development Proposed for the Project Geopark: an Example from Gabal Qatrani, Fayoum Depression, Western Desert, Egypt">
  <input type="hidden" name="copyrightyear" value="2022">
  <input type="hidden" name="year" value="2022">
  <input type="hidden" name="authors" value="Ezz El Din Abdel Hakim Khalaf, Gebely Abu El-Kheir">
  <input type="hidden" name="title" value="Geoheritage">
  <input type="hidden" name="mac" value="39C1ABF7DC54157048F554DC25C3F959">
  <input type="submit" class="c-box__button"
    onclick="dataLayer.push({&quot;event&quot;:&quot;addToCart&quot;,&quot;ecommerce&quot;:{&quot;currencyCode&quot;:&quot;EUR&quot;,&quot;add&quot;:{&quot;products&quot;:[{&quot;name&quot;:&quot;The Geological Heritage and Sustainable Development Proposed for the Project Geopark: an Example from Gabal Qatrani, Fayoum Depression, Western Desert, Egypt&quot;,&quot;id&quot;:&quot;1867-2485&quot;,&quot;price&quot;:37.4,&quot;brand&quot;:&quot;Springer Berlin Heidelberg&quot;,&quot;category&quot;:&quot;Earth Sciences&quot;,&quot;variant&quot;:&quot;ppv-article&quot;,&quot;quantity&quot;:1}]}}});"
    value="Buy article PDF">
</form>

Text Content

Skip to main content


Advertisement


Search
Go to cart
 * Log in

Search SpringerLink
Search
 * Original Article
 * Published: 02 February 2022


THE GEOLOGICAL HERITAGE AND SUSTAINABLE DEVELOPMENT PROPOSED FOR THE PROJECT
GEOPARK: AN EXAMPLE FROM GABAL QATRANI, FAYOUM DEPRESSION, WESTERN DESERT, EGYPT

 * Ezz El Din Abdel Hakim Khalaf1 &
 * Gebely Abu El-Kheir2 

Geoheritage volume 14, Article number: 22 (2022) Cite this article

 * 46 Accesses

 * Metrics details


ABSTRACT

The Qatrani area lies within the Fayoum Depression, North Western Desert, Egypt,
forming a part of the Qarun Protected Area (QPA). It has a marvelous natural
heritage with numerous outstanding characteristics. The geodiversity of the
Qatrani area is chiefly owing to the diverse rock types ranging from the Eocene
to the Quaternary periods, the climate, and the miscellaneous geological
typescripts, demonstrating the Earthʼs evolution. A complete understanding of
geoheritage miracles is vital for their use, preservation, and management that
could produce the root of geopark strategy. No quantitative assessment and
evaluation of these features has been carried out in the Qatrani area. So, the
goal of the present work aims to inventory and assess the geoheritage resources
through significant number of geosites recognizable in the Qatrani area on the
basis of representativeness, convenience, and scientific/aesthetic values. Most
of the Qatrani geosites could be of international prominence and exceptional
importance for the geoscientific community, geotourism use, and geopark
development. These geosites represent comprehensive band of unique phenomena.
The latter are allocated to the geological, stratigraphical, palaeontological,
geomorphological, palaeogeographical, igneous, and geoarchaeological typologies
that are considered an integral part of the geopark heritage. Using the geosite
assessment model (GAM), we evaluated these geosites and so determined their
values. Quantitative assessment of these geosites revealed that the bunched
geosites presented higher scientific, scenic, and recreational value scores and
delivered an appropriate reference for planning and development for contribution
towards developing a geopark. This appraisal refers to the brave commitment for
geoconservation program for the scientific, educational, and touristic purposes
as well as the appropriate advantages can be achieved within a geopark context
and the requirement for interpretive creativities to indorse information and
obligation among residents and visitors alike. Several recommendations and
suggestions/or actions related to infrastructure, protection, and tourism
services following the standards of the global Geopark Network by the UNESCO are
put forward and planned for the enhanced conservation of the geosites, progress
of education programs, and tourism encouragement to increase the reputation of
the Qatrani area as a geopark. The regional initiation and establishment of a
geopark would reinforce the fairly poor system of the protected areas, enhance
the maintainable development by appealing increasing numbers of guests, motivate
the economic achievement, and stop migration from rural settlements to nearby
towns and capitals.

This is a preview of subscription content, access via your institution.


ACCESS OPTIONS


BUY SINGLE ARTICLE

Instant access to the full article PDF.

37,40 €

Price includes VAT (Germany)
Tax calculation will be finalised during checkout.



Rent this article via DeepDyve.

Learn more about Institutional subscriptions


Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17



REFERENCES

 * Abdel-Fattah ZA, Gingras MK, Caldwell MW, Pemberton SG (2010) Sedimentary
   environments and depositional characteristics of the Middle to Upper Eocene
   whale-bearing succession in the Fayoum Depression. Egypt Sedimentology
   57:446–476
   
   Google Scholar 

 * Abdel-Fattah ZA, Gingras MK, Caldwell MW, Pemberton SG, MacEachern JA (2016)
   The glossifungites ichnofacies and sequence stratigraphic analysis: a case
   study from middle to upper Eocene successions in Fayoum. Egypt Ichnos
   23:157–179
   
   Google Scholar 

 * Abu El-Kheir GA (2010) Paleontological studies and sedimentological evolution
   in Wadi Elhitan district, Fayoum governorate, Egypt. Unpubl. M.Sc. Thesis.
   Cairo University, Egypt, 105p.

 * Akahane H, Furuno T, Miyajima H, Yoshikawa T, Yamamoto S (2004) Rapid wood
   silicification in hot spring water: an explanation of silicification of wood
   during the Earth’s history. Sediment Geol 169:219–228
   
   Google Scholar 

 * Al Dhwadi Z, Sallam ES (2019) Spheroidal “cannonballs” calcite-cemented
   concretions from the Fayoum and Bahariya depressions, Egypt: evidence of
   differential erosion by sand storms. Inter J of Earth Sci 108:2291–2293
   
   Google Scholar 

 * Alexandrowicz Z (2006) Geopark—nature protection category aiding the
   promotion of geoturism (Polish perspectives). Geoturism 2(5):3–13
   
   Google Scholar 

 * Alexandrowicz Z, WimbledonWA (1999) The concept of world lithosphere reserve.
   Memorie descrittive della Carta Geologica d’Italia: 347–35

 * Antić A, Tomić N (2017) Geoheritage and geotourism potential of the Homolje
   area (eastern Serbia). Acta Geoturistica 8(2):67–78
   
   Google Scholar 

 * Antić A, Tomić N, Đorđević T, Radulović M, Đević I (2020) Speleological
   objects becoming show caves: evidence from the Valjevo karst area in Western
   Serbia. Geoheritage 12:95. https://doi.org/10.1007/s12371-020-00517-9
   
   Article  Google Scholar 

 * Anan K, El Shahat A (2014) Provenance and sequence architecture of the
   Middle-Late Eocene Gehannam and Birket Qarun formations at Wadi Al Hitan,
   Fayoum Province. Egypt J Afri Earth Sci 100:614–625
   
   Google Scholar 

 * Andrews CW (1904) Notes on an expedition to the Fayoum Egypt, with
   description of some new mammals. Geol Mag 10:337–343
   
   Google Scholar 

 * Avelar S, Vasconcelos C, Mansur KL, Anjos SC, Vasconcelos GF (2018) Targeting
   sustainability issues at geosites: a study in Região dos Lagos, Rio de
   Janeiro, Brazil. Geoheritage 10:1–9
   
   Google Scholar 

 * Badawi BA (2008) Paleogene Proboscidea (Mammalla) from Fayoum Depression,
   Egypt: taxonomy and paleobiogeography. Master thesis, Cairo university, 135
   pp.

 * Beadnell HJL (1905) The topography and geology of the Fayoum Province of
   Egypt: Cairo, Survey Department, 101 p.

 * Began M, Višnić T, Djokić M, Vasiljevic DA (2017) Interpretation
   possibilities of geoheritage in southeastern Serbia—gorge and canyon study.
   Geoheritage 9:237–249
   
   Google Scholar 

 * Bitschene P, Schueller A (2011) Geo-education and geopark implementation in
   the Vulkaneifel European Geopark. GSA Field Guide 22:29–34
   
   Google Scholar 

 * Boley BB, Nickerson NP, Bosak K (2011) Measuring geotourism: developing and
   testing the geotraveler tendency scale (GTS). J Travel Res 50:567
   
   Google Scholar 

 * Bown TM (1982) Ichnofossils and rhizoliths of the nearshore fluvial Gabal
   Qatrani Formation (Oligocene), Fayoum province. Egypt Palaeogeogr
   Palaeoclimatol Palaeoecol 40:255–309
   
   Google Scholar 

 * Bown TM (1985) Maturation sequences in lower Eocene alluvial paleosols,
   Willwood Formation, northwest Wyoming, USA: In Kraus, M.J., ed., Field guide
   to trip 2, Fourth International Conference on Fluvial Sedimentology, Fort
   Collins, Colo.

 * Bown TM, Kraus MJ (1988) Geology and paleoenvironment of the Oligocene Gabal
   Qatrani Formation, Fayoum Depression. Egypt US Geological Survey Professional
   Paper 1452:1–60
   
   Google Scholar 

 * Bown TM, Kraus MJ, Wing SL, Fleagle JG, Tiffney BH, Simons EL, Vondra CF
   (1982 ) The Fayoum primate forest revisited: The Journal of Human Evolution11
   : 603–632.

 * Bown TM, Simons EL (1984) First record of marsupials (Metatheria:
   Polyprotodonta) from the Oligocene in Africa. Nature 308:447–449
   
   Google Scholar 

 * Bowen BE, Vondra CF (1974) Paleoenvironmental interpretation of the Oligocene
   Gabal Qatrani Formation, Fayoum Depression. Annal Geol Surv, Egypt 4:115–138
   
   Google Scholar 

 * Božić S, Tomić N (2015) Canyons and gorges as potential geotourism
   destinations in Serbia: comparative analysis from two perspectives - general
   geotourists’ and pure geotourists’. Open Geosci 7(1):531–546
   
   Google Scholar 

 * Božić S, Tomić N, Pavić D (2014) Canyons as potential geotourism attractions
   of Serbia - comparative analysis of Lazar and Uvac canyons by using M-GAM
   model. Acta Geoturistica 5(2):18–30
   
   Google Scholar 

 * Brilha J (2016) Inventory and quantitative assessment of geosites and
   geodiversity sites: a review. Geoheritage 8(2):119–134
   
   Google Scholar 

 * Brilha J, Pereira DI, Pereira P (2016) Promoting education and training: an
   online course on geoparks. In 7th International Conference on UNESCO Global
   Geoparks, Abstract Book, English Riviera UNESCO Global Geopark, Torquay, UK,
   p 147

 * Brocx M, Semeniuk V (2007) Geoheritage and geoconservation history,
   definition, scope, and scale. J Roy Soc WAust 90:53–87
   
   Google Scholar 

 * Bruno DE, Crowley BE, Gutak M, Moroni A, Nazarenko OV, Oheim KB, Ruban DA,
   Tiess G, Zorina SO (2014) Paleogeography as geological heritage: developing
   geosite classification. Earth-Science Rev 138:300–312
   
   Google Scholar 

 * Bruschi VM, Cendrero A (2005) Geosite evaluation; can we measure intangible
   values? Alpine Mediterr Quat 18(1):293–306
   
   Google Scholar 

 * Bryan WB, Stephens RS (1993) Coastal bench formation at Hanauma Bay, Oahu.
   Hawaii. Geol Soci Amer Bull 105(3):377–386
   
   Google Scholar 

 * Carr MH (2009) The surface of Mars. Cambridge University Press.
   https://doi.org/10.1017/CBO9780511536007
   
   Article  Google Scholar 

 * Citiroglu HK, Isik S, Pulat O (2017) Utilizing the geological diversity for
   sustainable regional development, a case study-Zonguldak (NW Turkey).
   Geoheritage 9:211–223
   
   Google Scholar 

 * Coratza P, Giusti C (2005) Methodological proposal for the assessment of the
   scientific quality of geomorphosites. Alpine Mediterr Quat 18(1):307–313
   
   Google Scholar 

 * Dabezies JM (2011) Methodological proposal for the selection of
   archaeologicalsites to be used in the development of a product for tourism.
   Intersecc Antropol 12:305–318
   
   Google Scholar 

 * Daniels FJ, Dayvault RD (2006) Ancient forests. A closer look at fossil wood;
   Western Colorado Publishing Company: Grand Junction, CO, USA, p. 450. ISBN
   978–0966293814.

 * Davoli, P., 2012. The archaeology of the Fayum. In: Riggs, C. (Ed.), The
   Oxford Handbook of Roman Egypt. Oxford University Press, Oxford, pp. 152e170.

 * De Lima FF, Brilha JB, Salamuni E (2010) Inventorying geological heritage in
   large territories: a methodological proposal applied to Brazil. Geoheritage
   2:91–99. https://doi.org/10.1007/s12371-010-0014-9
   
   Article  Google Scholar 

 * DiMichele WA, Aronson RB (1992) The Pennsylvanian-Permian vegetational
   transition: a terrestrial analogue to the onshore-offshore hypothesis.
   Evolution 46:807–824
   
   Google Scholar 

 * DiMichele WA, Pfefferkorn HW, Gastaldo RA (2001) Response of late
   Carboniferous and early Permian plant communities to climate change. Annu Rev
   Earth Planet Sci 29:461–487
   
   Google Scholar 

 * Dingwall PR (2000) Legislation and international agreements: the integration
   of the geological heritage in nature conservation policies. In: Beretina D,
   Wimbledon WA, Gallego E (eds) Geological heritage: its conservation and
   management. Sociedad Geológica de España, Madrid, pp 15–28
   
   Google Scholar 

 * Dernbach, U., 1996. Petrified Forests: the world’s 31 most beautiful
   petrified forests. D’Oro, Heppenheim, 190p.

 * Dernbach U, Tidwell WDI (2002) Secrets of petrified plants—fascination from
   millions of years; D’ORO Publishers: Heppenheim, Germany, p. 232. ISBN
   978–3932181047.

 * Dixon G (1995) Geoconservation: an international review and strategy for
   Tasmania. A Report to the Australian Heritage Commission, Occasional Paper
   No. 35, Parks & Wildlife Service, Tasmania, 101

 * Dixon G (1996) Geoconservation: an international review and strategy for
   Tasmania. Parks and Wildlife Service, Tasmania, Miscellaneous Report, Hobart,
   Tas
   
   Google Scholar 

 * Dolson J, El Barkoky A, Weher F, Gingerich Ph,Porchazka D, Shann M (2002)
   Field trip No.7 The Eocene and Oligocene paleoecology and paleogeography of
   whale valley and Fayoum basins: implications of hydrocarbon exploration in
   the Nile delta and Eco-Tourism in greater Fayoum basin. Amer Ass of Petrol
   Geol, 79.

 * Dony AN (2017) Systematic studies of geoheritage in Jeli District, Kelantan,
   Malaysia. Geoheritage 9:19–33
   
   Google Scholar 

 * Dowling RK (2011) Geotourism’s global growth. Geoheritage 3:1–13
   
   Google Scholar 

 * Dowling RK, Newsome D (eds) (2006) Geotourism: sustainability, impacts and
   management. Elsevier, Oxford
   
   Google Scholar 

 * Eder W (2008) Geoparks - promotion of earth sciences through geoheritage
   conservation, education and tourism. J Geol Soc India 72:149–154
   
   Google Scholar 

 * Eder FW, Patzak M (2004) Geoparks—geological attractions: a tool for public
   education, recreation and sustainable economic development.
   Episodes-Newsmagazine Int Union Geol Sci 27(3):162–164
   
   Google Scholar 

 * El Anbaawy MI, Helal SA, Abu El-Kheir GA (2018) Contribution of the
   taphonomic significances of marine mammals in Wadi El-Hitan and northern Lake
   Qaroun sectors, Fayoum. Egypt Egyptian J of Geology 62:401–422
   
   Google Scholar 

 * El Araby A, El Barkooky AN (2000) Stratigraphic architecture and facies
   evolution of the Oligocene Gabal Qatrani, North Fayoum, Egypt. The 5th Int
   Conf on the Geol of the Arab World. Cairo University 3:1175–1208
   
   Google Scholar 

 * El Khashab B (1977) A brief account on Egyptian Paleogene Proboscidea. Annal
   Geol Surv, Egypt 9:245–260
   
   Google Scholar 

 * Endere ML, Prado JL (2014) Characterization and valuation of paleontological
   heritage: a perspective from Argentina. Geoheritage.
   https://doi.org/10.1007/s12371-014-0124-x
   
   Article  Google Scholar 

 * El-Fawal FM, El-Asmar HM, Sarhan M (2013) Depositional evolution of the
   middle-upper Eocene rocks, Fayoum area. Egypt Arab J Geosci 6:749–760
   
   Google Scholar 

 * El Saadawi W (2006) On the fossil flora of Gabal Qatrani area, Fayoum. Egypt
   Taeckholmia 26:131–140
   
   Google Scholar 

 * El Saadawi W, Kamal El Din MM (2004) Termination species from Gabal Qatrani
   Formation at Widan El Faras. Fayoum Egypt Taeckholmia 24:63–78
   
   Google Scholar 

 * El Saadawi W, Youssef SGM, Kamal El Din MM (2004) Fossil woods of Egypt. II.
   Seven tertiary palmoxylon species new to the country. Rev Palaeob Palynol
   129:199–211
   
   Google Scholar 

 * Elrick M (1995) Cyclostratigraphy of Middle Devonian carbonates of the
   eastern Great Basin. J Sediment Res B 65:61–79
   
   Google Scholar 

 * Farsani NT, Coelho C, Costa C (2011) Geotourism and geoparks as novel
   strategies for socio-economic. Int J Tour Res 13:68–81
   
   Google Scholar 

 * Farsani N, Coelho C, Costa C, Amrikazemi A (2014) Geo-knowledge management
   and geoconservation via geoparks and geotourism. Geoheritage 6:185–192
   
   Google Scholar 

 * Fleagle JG, Brown TM, Obradovich JD, Simons EL (1986) How old are the Fayoum
   primates? In: Else JG, Lee PC (eds) Primate evolution. Cambridge University
   Press, Cambridge, pp 4–17
   
   Google Scholar 

 * Fung CKW, Jim CY (2015) Unraveling Hong Kong Geopark experience with
   visitor-employed photography method. Appl Geogr 62:301–313
   
   Google Scholar 

 * Gameil M, Al Anbaawy M, Abdel Fattah M, Abu El-Kheir G (2016) Lithofacies and
   biofacies characteristics and whales skeletons distribution in the Eocene
   rock units of Fayoum Area. Egypt J Afr Earth Sci 116:42–55
   
   Google Scholar 

 * Gingerich PD (1992) Marine mammals (Cetacea & Sirenia) from the Eocene of
   Gabal Mokattam and Fayoum, Egypt: stratigraphy, age, and paleoenvironment.
   Papers on Paleontology, Michigan University 30:1–84
   
   Google Scholar 

 * Gingerich PD (1993) Marine Mammals (Cetacea and Sirenia) from the Eocene of
   Gebel Mokattam and Fayum, Egypt; Stratigraphy, Age and Paleoenvironments.
   University of Michigan, Papers on Paleontology No. 30, 84 pp

 * Giurginca A, Munteanu CM, Stanomir ML, Niculescu G, Giurginca M (2010)
   Assessment of potentially toxic metals concentration in karst areas of the
   Mehedinti plateau geopark (Romania). Carpathian Journal of Earth and
   Environmental Sciences 5(1):103–110
   
   Google Scholar 

 * Gordon JE (2019) Geoconservation principles and protected area management.
   International Journal of Geoheritage and Parks 7:199–210.
   https://doi.org/10.1016/j.ijgeop.2019.12.005
   
   Article  Google Scholar 

 * Goudie A (2008) Yardang landforms from Kharga Oasis, south-western Egypt. Z
   Geomorph N F Suppl-Bd 116:97–112, Aeolian Geomorphology: Papers from 14th
   international Conference on Aeolian Research, Oxford

 * Gray M (2004) Geodiversity. Wiley, Valuing and conserving abiotic nature.
   Chichester, p 434
   
   Google Scholar 

 * Guiraud R, Bosworth W (1997) Senonian basin inversion and rejuvenation of
   rifting in Africa and Arabia: synthesis and implications to plate-scale
   tectonics. Tectonophysics 282:39–82
   
   Google Scholar 

 * Guiraud R, Bosworth W, Thierry J, Delphanque A (2005) Phanerozoic geological
   evolution of northern and central Africa: overview. J Afr Earth Sci 43:83–143
   
   Google Scholar 

 * Gurnee J (1994) Management of some unusual features in the show caves of the
   United States. Int J Speleol 23(1):2
   
   Google Scholar 

 * Harrell JA, Bown TM (1995) An old kingdom basalt quarry at Widan El Faras and
   the quarry road to lake Moeris. J Amer Res Centre in Egypt 32:71–91
   
   Google Scholar 

 * Heikal MA, Hassan MA, El Sheshtawi Y (1983) The Cenozoic basalt of Gabal
   Qatrani, Western Desert, Egypt as an example of continental tholeiitic
   basalt. Ann Geol Surv Egypt 13:193–209
   
   Google Scholar 

 * Helmy E, Cooper C (2002) An assessment of sustainable tourism planning for
   the archaeological heritage: the case of Egypt. J Sustain Tour 10:514–535
   
   Google Scholar 

 * Henriques MH, Brilha J (2017) UNESCO Global Geoparks: a strategy towards
   global understanding and sustainability. Episodes 40:349–355
   
   Google Scholar 

 * Henriques MH, Pena dos Reis R (2015) Framing the palaeontological heritage
   within the geological heritage: an integrative vision. Geoheritage 7:249–259.
   https://doi.org/10.1007/s12371-014-0141-9
   
   Article  Google Scholar 

 * Hooke RLB (2000) On the history of humans as geomorphic agents. Geology
   28:843–846
   
   Google Scholar 

 * Hose TA (1996) Geotourism, or can tourists become casual rock hounds? In:
   Bennett MR et al (eds) Geology at your doorstep: the role of urban geology in
   earth heritage conservation. The Geological Society, London, pp 207–228
   
   Google Scholar 

 * Hose TA (2000) Geological interpretation and geoconservation promotion for
   tourists. In: Barretino D, Wimbledon WAP, Gallego E (eds) Geological
   heritage: its conservation and management. Sociedad Geologica de
   Espana/Instituto Technologico GeoMinero de Espana/ProGEO, Madrid, pp 127–146
   
   Google Scholar 

 * Horváth G, Csüllög G (2013) A new Slovakian-Hungarian cross-border geopark in
   Central Europe —possibility for promoting better connections between the two
   countries. European Countryside 5:146–162
   
   Google Scholar 

 * Huggett JL (2007) Fundamentals of geomorphology. Routledge, New York, New
   York, pp 978-0-415-39084–2
   
   Google Scholar 

 * Issawi B (1968) The geology of the kurkur-dungul area. General egyptian
   organization for geological research and mining. Geol Surv Pap 46:1–102
   
   Google Scholar 

 * King C, Underwood C, Steurbaut E (2014) Eocene stratigraphy of the Wadi Al-
   Hitan world heritage site and adjacent areas (Fayoum, Egypt). Stratigraphy
   11:185–234
   
   Google Scholar 

 * Kirillova K, Fu X, Lehto X, Cai L (2014) What makes a destination beautiful?
   Dimensions of tourist aesthetic judgment. Tour Manage 42:282–293
   
   Google Scholar 

 * Issawi B, Francis M, Youssef A, Osman R (2009) The Phanerozoic of Egypt: a
   geodynamic approach. Geological Survey of Egypt, Cairo, p 589
   
   Google Scholar 

 * Jonić V (2018) Comparative analysis of Devils town and Bryce canyon geosites
   by applying the modified geosite assessment model (MGAM). Res Rev Dep Geogr
   Tourism Hotel Manag 47(2):113–125
   
   Google Scholar 

 * Khalaf EA, Abdel Wahed M, Mayed A, Mokhtar H (2019) Volcanic geosites and
   their geoheritage values preserved in monogenetic Neogene volcanic field,
   Bahariya depression, Western Desert, Egypt: implication for climatic
   change-controlling volcanic eruption. Geoheritage 11:855–873.
   https://doi.org/10.1007/s12371-018-0336-6
   
   Article  Google Scholar 

 * Kubalíková L, Kirchner K (2016) Geosite and geomorphosite assessment as a
   tool for geoconservation and geotourism purposes: a case study from Vizovická
   vrchovina highland (eastern part of the Czech Republic). Geoheritage 8:5–14
   
   Google Scholar 

 * Lazzari M, Aloia A (2014) Geoparks, geoheritage and geotourism: opportunities
   and tools in sustainable development of the territory. Geoj Tour Geosites
   13:8–9
   
   Google Scholar 

 * Liu HL (2016) Experience and inspiration from construction of United States
   national parks and gateway communities. Eng Sci 5:100–108
   
   Google Scholar 

 * Luthardt L, Rößler R, Schneider JW (2016) Palaeoclimatic and site-specific
   conditions in the early Permian fossil forest of Chemnitz—Sedimentological,
   geochemical and palaeobotanical evidence. Palaeogeogr Palaeoclimatol
   Palaeoecol 441:627–652
   
   Google Scholar 

 * Manuel GR, Enrique FS (2017) Geo-climbing and environmental education: the
   value of La Pedriza Granite Massif in the Sierra de Guadarrama national park,
   Spain. Geoheritage 9:141–151
   
   Google Scholar 

 * Margiotta S, Sansò P (2014) The geological heritage of Otranto-Leuca Coast
   (Salento, Italy). Geoheritage 6:305–316
   
   Google Scholar 

 * Marlina E (2016) Geotourism as a strategy of geosite empowerment towards the
   tourism sustainability in Gunungkidul Regency. Indonesia Int J Smart Home
   10:131–148
   
   Google Scholar 

 * Mariotto FP, Venturini C (2017) Strategies and tools for improving earth
   science education and popularization in museums. Geoheritage 9:187–194
   
   Google Scholar 

 * Mashaal NM, Sallam ES, Khater TM (2020) Mushroom rock, inselberg, and butte
   desert landforms (Gebel Qatrani, Egypt): evidence of wind erosion. Inter J
   Earth Sci. https://doi.org/10.1007/s00531-020-01883-z
   
   Article  Google Scholar 

 * Matysovà P, Ronny R, Götz JL, Jaromír F, Taylor G, Sakala E, Grygar J, Tomáš
   J (2010) Alluvial and volcanic pathways to silicified plant stems (Upper
   Carboniferous-Triassic) and their taphonomic and paleoenvironmental meaning.
   Palaeogeography, Palaeoclimate, Palaeoecology 292(1–2):17
   
   Google Scholar 

 * McKeever P, Zouros N, Patzak M, Weber J (2010) The UNESCO global network of
   national geoparks. In: Newsome D, Dowling R (eds) Geotourism: the tourism of
   geology and landscape. Goodfellow Publishers Ltd, Oxford, pp 221–230
   
   Google Scholar 

 * Melinte-Dobrinescu MC, Brustur T, Jipa D, Macaleţ R, Ion G, Ion E, Popa A,
   Ion S, Briceag A (2017) The geological and palaeontological heritage of the
   Buzău Land geopark (Carpathians, Romania). Geoheritage 9:225–236
   
   Google Scholar 

 * Mikhailenko AV, Nazarenko OV, Ruban DA, Zayats PP (2017) Aesthetics-based
   classification of geological structures in outcrops for geotourism purposes:
   a tentative proposal. Geologos 23:45–52
   
   Google Scholar 

 * Moroni A, Gnezdilova VV, Ruban DA (2015) Geological heritage in
   archaeological sites: case examples from Italy and Russia. Proc Geol Assoc
   126:244–251
   
   Google Scholar 

 * Moustafa YS (1974) Critical observations of the occurrence of Fayoum fossil
   vertebrates. Annal Geol Surv, Egypt 4:41–68
   
   Google Scholar 

 * Mucivuna VC, Reynard E, Garcia MGM (2019) Geomorphosites assessment methods:
   comparative analysis and typology. Geoheritage 11:1799–1815
   
   Google Scholar 

 * Nenonen K, Johansson P, Sallasmaa O, Sarala P, Palmu J (2018) The inselberg
   landscape in Finnish Lapland: a morphological study based on the LiDAR data
   interpretation. Bull Geol Soc Finl 90:239–256
   
   Google Scholar 

 * Newsome D, Dowling R (2005) The scope and nature of geoturism. DowlingR,
   NewsomeD(eds) Geoturism. Elsevier, Amsterdam, pp 3–25
   
   Google Scholar 

 * Newsome D, Moore S, Dowling R (2013) Natural area tourism: ecology, impacts
   and management, 2nd edn. Channel View Publications, Clevedon
   
   Google Scholar 

 * Olafsdottir R (2019) Geotourism Geosciences 9:48
   
   Google Scholar 

 * Olafsdottir R, Dowling R (2014) Geotourism and geoparks-a tool for
   geoconservation and rural development in vulnerable environments: a case
   study from Iceland. Geoheritage 6:71–87
   
   Google Scholar 

 * Pál M, Albert G (2018) Comparison of geotourism assessment models: and
   experiment in Bakony-Balaton UNSECO Global Geopark. Hungary. Acta
   Geoturistica 9(2):1–13
   
   Google Scholar 

 * Panizza M (2001) Geomorphosites: concepts, methods and example of
   geomorphological survey. Chin Sci Bull 46:4–6
   
   Google Scholar 

 * Pereira P, Pereira D, Caetano-Alves MI (2007) Geomorphosite assessment in
   Montesinho Natural Park (Portugal). Geogr Helv 62(3):159–168
   
   Google Scholar 

 * Philippe M, Boonchai N, Ferguson DK, Hui J, Songtham W (2013) Giant trees
   from the Middle Pleistocene of Northern Thailand. Quat Sci Rev 65:1–4
   
   Google Scholar 

 * Popa RG, Popa DA, Alexandru A (2017a) The SEA and Big-S models for managing
   geosites as resources for local communities in the context of rural geoparks.
   Geoheritage 9:175–186
   
   Google Scholar 

 * Plysnina E, Sallam E, Ruban D (2016) Geological heritage of the Bahariya and
   Farafra Oases, the central Western Desert. Egypt J Afr Earth Sci 116:151–159
   
   Google Scholar 

 * Popa RG, Popa DA, Andrășanu A (2017b) The SEA and Big-S models for managing
   geosites as resources for local communities in the context of rural geoparks.
   Geoheritage 9:175–186. https://doi.org/10.1007/s12371-016-0192-1
   
   Article  Google Scholar 

 * Pralong JP (2005) A method for assessing the tourist potential and use of
   geomorphological sites. Géomorphol Relief Process Environ 3:189–196
   
   Google Scholar 

 * Prosser CD (2013) Our rich and varied geoconservation portfolio: the
   foundation for the future. Proc Geologists Assoc 124:568–580
   
   Google Scholar 

 * Ramsay T (2017) Forest Fawr Geoparkda UNESCO Global Geopark distinguished by
   its geological, industrial and cultural heritage. Proc Geologists Assoc
   128:500–509
   
   Google Scholar 

 * Rapprich V, Lisec M, Fiferna P, Závada P (2016) Application of modern
   technologies in popularisation of the Czech Volcanic. Geoheritage 50:106–115
   
   Google Scholar 

 * Reynard E (2008) Scientific research and tourist promotion of
   geomorphological heritage. Geogr Fis Din Quat 31:225–230
   
   Google Scholar 

 * Reynard E, Coratza P (2007) Geomorphosites and geodiversity: a new domain of
   research. Geogr Helv 62:138–139
   
   Google Scholar 

 * Reynard E, Bussard J, Grangier L, Martin S (2016) Integrated approach for the
   inventory and management of geomorphological heritage at the regional scale.
   Geoheritage 8(1):43–60. https://doi.org/10.1007/s12371-015-0153-0
   
   Article  Google Scholar 

 * Reynard E, Fontana G, Kozlik L, Scapozza C (2007) A method for assessing
   “scientific” and “additional values” of geomorphosites. Geogr Helv
   62(3):148–158
   
   Google Scholar 

 * Rößler R, Barthel M, Rotliegend N (1998) Taphocoenoses preservation favoured
   by rhyolithic explosive volcanism. Freib Forsch 44:59–101
   
   Google Scholar 

 * Rößler R, Zierold T, Feng Z, Kretzschmar R, Merbitz M, Annacker V, Schneider
   JW (2012) A snapshot of an early Permian ecosystem preserved by explosive
   volcanism: new results from the Chemnitz Petrified Forest, Germany. Palaios
   27:814–834
   
   Google Scholar 

 * Ross D, Saxena G, Correia F, Deutz P (2017) Archaeological tourism: a
   creative approach. Ann Tour Res 67:37–47
   
   Google Scholar 

 * Ruban DA (2015) Geotourism - a geographical review of the literature. Tour
   Manag Perspect 15:1–15
   
   Google Scholar 

 * Ruban DA (2017) Geodiversity as a precious national resource: a note on the
   role of geoparks. Resour Policy 53:103–108
   
   Google Scholar 

 * Ruban DA, Sallam ES, Khater TM, Ermolaey UA (2021) Golden Triangle Geosites:
   preliminary geoheritage assessment in a geologically rich area of East Egypt.
   Geoheritage 13:54. https://doi.org/10.1007/s12371-021-00582-8
   
   Article  Google Scholar 

 * Said R (1962) The geology of Egypt: Amsterdam, Elsevier, 377p.

 * Said R (1990) The geology of Egypt. Balkema, 734P.

 * Sallam ES, Ponedelnik AA, Tiess G, Yashalova NN, Ruban DA (2018a) The
   geological heritage of the Kurkur-Dungul area in southern Egypt. J Afr Earth
   Sci 137:103–115
   
   Google Scholar 

 * Sallam ES, Ruban DA (2017) Palaeogeographical type of the geological heritage
   of Egypt: a new evidence. J Afr Earth Sci 129:739–750
   
   Google Scholar 

 * Sallam ES, Fathy E, Ruban DA, Ponedelnik AA, Yashalova NN (2018b) Geological
   heritage diversity in the Fayoum Oasis (Egypt): a comprehensive assessment. J
   Afr Earth Sci 140:212–224
   
   Google Scholar 

 * Scurfield G, Segnit ER (1984) Petrification of wood by silica minerals. Sed
   Geol 39:149–167
   
   Google Scholar 

 * Shamah K, Blondeau A, Calvez YL, Berchnielsen K, Toumarkine M (1982)
   Biostratigraphic de IʼEocene de La Formation El Midawarah region de Wadi El
   Rayan Province de Fayoum area, Egypte. Cahiers De Micropaleontologie 1:91–104
   
   Google Scholar 

 * Sharples EB (2002) Australia’s geoheritage history of study, a new inventory
   of geosites and applications to geotourism and geoparks. Geoheritage 2:39–56
   
   Google Scholar 

 * Seiffert E. R, Bown T. M, Clyde W. C, and Simons E. L (2008): Geology,
   paleoenvironment, and age of Birket Qarun Locality 2 (BQ-2), Fayum
   Depression, Egypt. In Fleagle JG & Gilbert CC (eds) Elwyn L. Simons: a search
   for origins. New York: Springer, pp. 71–86.

 * Serrano E, González-Trueba JJ (2005) Assessment of geomorphosites in natural
   protected areas: the Picos de Europa National Park (Spain). Géomorphologie
   Formes Process Environ 3:197–208
   
   Google Scholar 

 * Shirai N (2016) The desert Fayoum : revisiting a neolithic farming community
   in Egypt. Antiquity 90:1181–1195
   
   Google Scholar 

 * Shirai N (2017) Teething problems in cereal cultivation in prehistoric Egypt:
   a restudy of Fayoum Neolithic sickle blades. Azania 52:209–232
   
   Google Scholar 

 * Simon El (1968) African Oligocene mammals: introduction, history, and faunal
   succession. Pebody Museum of Natural History, Yale University Bulletin 28,
   105pp

 * Simon El (2005) Eocene and Oligocene mammals of the Fayoum, Egypt. 1st
   International Conference on the Geology of the Tethys, Cairo university 2:
   439–450.

 * Simmons EL (1967) The earliest apes. Sci Am 217:28–35
   
   Google Scholar 

 * Simons EL (1986) Early Cenozoic mammalian faunas, Fayoum Province, Egypt.
   Part 1. African Oligocene mammals: introduction, history of study, and faunal
   succession. Bulletin of the Peabody Museum of Natural History, Yale
   University 28:1–21

 * Simons EL (2005) The cranium of Parapithecus grangeri, an Egyptian Oligocene
   anthropoidean primate. Proceedings of the National Academy of Sciences of the
   United States of America  98:7892–7897

 * Simons EL, Rasmussen DT, Bown TM, Chatrath PS (1994) The Eocene origin of
   anthropoid primates: Adaptation, evolution and diversity; in Fleagle J.G& Kay
   R. F. (eds) Anthropoid Origins, New York, Plenum Press, pp. 179–202

 * Simmons EL, Wood AE (1968) Early Cenozoic faunas, Fayoum Province, Egypt.
   Bull Peabody Museum of Natural History, Yale University 28:1–105
   
   Google Scholar 

 * Simons EL, Cornero S, Bown TM (1996) Taphonomy of fossil vertebrate Quarry
   L.41, Upper Eocene, Fayum Depression. Egypt Proceeding of the Egyptian
   Geological Survey Centennial Conference, Special Publication, Paper
   75:785–791
   
   Google Scholar 

 * _Strba L, Krk, B, Molok MA, damkovi J ( 2016) Geotourism and geoparks – a
   sustainable form of environmental protection. In: Production Management and
   Engineering Sciences - Scientific Publication of the International Conference
   on Engineering Science and Production Management, ESPM 2015. Tatranska Strba,
   pp. 279–284.

 * Swedan AH (1986) Contribution to the geology of Fayoum area. Ph.D thesis,
   Cairo university, 255pp

 * Swedan AH (1993) Stratigraphy of the Eocene sediments in the Fayoum area. Ann
   Geol Surv Egypt 18:157–166
   
   Google Scholar 

 * Simon E, Rasmussen DT (1990) Vertebrate paleontology of Fayoum: history of
   research, faunal review and future prospects. In: Said R (ed) Geology of
   Egypt. Balkema, Rotterdam, pp 627–638
   
   Google Scholar 

 * Suzuki DA, Takagi H (2018) Evaluation of geosite for sustainable planning and
   management in geotourism. Geoheritage 10:123–135
   
   Google Scholar 

 * Tomić N, Antić A, Marković SB, Đorđević T, Zorn M, Valjavec MB (2019)
   Exploring the potential for speleotourism development in Eastern Serbia.
   Geoheritage 11(2):359–369
   
   Google Scholar 

 * Tomić N, Marković SB, Antić A, Tešić D (2020) Exploring the potential for
   geotourism development in the Danube Region of Serbia. Int J Geoheritage
   Parks 8(2):123–139
   
   Google Scholar 

 * Tawadros E (2011) Geology of North Africa. CRC Press, London, p 930
   
   Google Scholar 

 * Twidale CR (1981) Granitic inselbergs: domed, block-strewn and castellated.
   Geogr J 147:54–71
   
   Google Scholar 

 * Twidale R, Vidal Romani JR (2005) Landforms and Geology of Granite Terrains
   2005. CRC Press, London, p 354
   
   Google Scholar 

 * UNESCO (2016) UNESCO Global Geoparks. http://unesdoc.unesco.org/
   images/0024/002436/243650e.pdf. Accessed Feb 2016

 * Uroš S, Aleksandra T (2018) A new quantitative model for comprehensive
   geodiversity evaluation: the Škocjan Caves Regional Park, Slovenia.
   Geoheritage 10:39–48
   
   Google Scholar 

 * Vondra CF (1974) Upper Eocene transitional and near shore marine Qasr El
   Sagha Formation, Fayoum Depression. Egypt Annal Geol Surv, Egypt 4:79–94
   
   Google Scholar 

 * Vujičić MD, Vasiljević ĐA, Marković SB, Hose TA, Lukić T, Hadžić O, Janićević
   S (2011) Preliminary geosite assessment model (gam) and its application on
   Fruška gora mountain, potential geotourism destination of Serbia. Acta Geogr
   Slov 51(2):361–376
   
   Google Scholar 

 * Vuković S, Antić A (2019) Speleological approach for geotourism development
   in Zlatibor county (West Serbia). Turizam 23(1):53–68
   
   Google Scholar 

 * Wang L, Tian M, Wang L (2015a) Geodiversity, geoconservation and geotourism
   in Hong Kong global geopark of China. Proc Geol Assoc 126(3):426–437
   
   Google Scholar 

 * Wang SJ,Wan YS, Xu P, Zheng ZQ, Yao CM, Yang EX, Song ZY,Wang NJ,Meng YH,
   XiaoWG, Ren P, ZhangY(2015b) Characteristics of major geological heritages of
   the geoparks in Shandong province. Acta Geosci Sin 5:669–684

 * Wartiti M, Malaki A, Zahraoui M, Ghannouchi A, Gregorio F (2008) Geosites
   inventory of the northwestern tabular middle atlas of Morocco. Environ Geol
   55(2):415–422
   
   Google Scholar 

 * Wilkinson BH (2005) Humans as geologic agents: a deep-time perspective.
   Geology 33:161–164
   
   Google Scholar 

 * Wing SL, Hasiotis ST, Bown TM (1995) First ichnofossils of flank-buttressed
   trees (late Eocene). Fayoum Depression Egypt Ichnos 3:281–286
   
   Google Scholar 

 * Woo KS, Sohn YK, Yoon SH, San Ahn U, Spate A (2013) Jeju Island geopark—a
   volcanic wonder of Korea. Springer, Berlin Heidelberg, p 88p
   
   Google Scholar 

 * Wright VP (1994) Paleosols in shallow marine carbonate sequences. Earth Sci
   Rev 35:367–395
   
   Google Scholar 

 * Wright VP, Platt NH, Wimbledon WA (1988) Biogenic laminarcalcretes: evidence
   of calciwed root-mat horizons in paleosols. Sedimentology 35:603–620
   
   Google Scholar 

 * Yılmaz A (2002) Jeolojik Mirasımız. Bilim ve Teknik 416:92–93, Ankara.

 * Zhu HS, Cheng WJ, Ren LZ (2013) US national parks’ administration system.
   Urban Problems 5:90–95
   
   Google Scholar 

 * Zangmo Tefogoum G, Kagou Dongmo A, Nkouathio DG, Wandji P, Gountie Dedzo M
   (2017) Geomorphological features of the Manengouba volcano (Cameroon line):
   assets for potential geopark development. Geoheritage 6:225–239
   
   Google Scholar 

 * Zouros NC (2007) Geomorphosite assessment and management in protected areas
   of Greece Case study of the Lesvos island & ndash; coastal geomorphosites.
   Geogr Helv 62(3):169–180
   
   Google Scholar 

 * Zouros N (2004) The European Geoparks Network. Geological heritage protection
   and local development. Episodes 27(3):165–171
   
   Google Scholar 

 * Zouros N, McKeever P (2004) The European geoparks network. Episodes
   27:165–171
   
   Google Scholar 

Download references


ACKNOWLEDGEMENTS

The authors thank Prof. Nasrrddine Youbi, Cadi Ayyad University, Morocco, for
his review of the manuscript. An anonymous reviewer improved the quality of the
paper and is gratefully acknowledged. Positive suggestions from editor Kevin
Page are appreciatively accredited.


AUTHOR INFORMATION


AFFILIATIONS

 1. Faculty of Science, Geology Department, Cairo University, Giza, Egypt
    
    Ezz El Din Abdel Hakim Khalaf

 2. Faculty of Science, Geology Department, New Valley University, El Kharaga
    Oases, Egypt
    
    Gebely Abu El-Kheir

Authors
 1. Ezz El Din Abdel Hakim Khalaf
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 2. Gebely Abu El-Kheir
    View author publications
    
    You can also search for this author in PubMed Google Scholar


CORRESPONDING AUTHOR

Correspondence to Ezz El Din Abdel Hakim Khalaf.


ETHICS DECLARATIONS


COMPETING INTERESTS

The authors declare no competing interests.


SUPPLEMENTARY INFORMATION

Below is the link to the electronic supplementary material.


SUPPLEMENTARY FILE1 SUPPLEMENTARY TABLE 1: THE MAIN VALUES OF THE GAM MODEL
(AFTER VUJIČIĆ ET AL., 2011) (DOCX 15 KB)


12371_2022_646_MOESM2_ESM.DOCX

Supplementary file2 Supplementary Table 2: The Additional Values of the GAM
Model (after Vujičić et al., 2011) (DOCX 15 KB)


RIGHTS AND PERMISSIONS

Reprints and Permissions


ABOUT THIS ARTICLE


CITE THIS ARTICLE

Khalaf, E.E.D.A.H., El-Kheir, G.A. The Geological Heritage and Sustainable
Development Proposed for the Project Geopark: an Example from Gabal Qatrani,
Fayoum Depression, Western Desert, Egypt. Geoheritage 14, 22 (2022).
https://doi.org/10.1007/s12371-022-00646-3

Download citation

 * Received: 04 May 2021

 * Accepted: 06 January 2022

 * Published: 02 February 2022

 * DOI: https://doi.org/10.1007/s12371-022-00646-3


SHARE THIS ARTICLE

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.



Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative


KEYWORDS

 * Geosite assessment model (GAM)
 * Sustainable development
 * Qatrani Geopark
 * Geoheritage evaluation
 * Geotourism




ACCESS OPTIONS


BUY SINGLE ARTICLE

Instant access to the full article PDF.

37,40 €

Price includes VAT (Germany)
Tax calculation will be finalised during checkout.



Rent this article via DeepDyve.

Learn more about Institutional subscriptions


 * Sections
 * Figures
 * References

 * Abstract
 * References
 * Acknowledgements
 * Author information
 * Ethics declarations
 * Supplementary Information
 * Rights and permissions
 * About this article

Advertisement


 * Fig. 1
 * Fig. 2
 * Fig. 3
 * Fig. 4
 * Fig. 5
 * Fig. 6
 * Fig. 7
 * Fig. 8
 * Fig. 9
 * Fig. 10
 * Fig. 11
 * Fig. 12
 * Fig. 13
 * Fig. 14
 * Fig. 15
 * Fig. 16
 * Fig. 17

 1.   Abdel-Fattah ZA, Gingras MK, Caldwell MW, Pemberton SG (2010) Sedimentary
      environments and depositional characteristics of the Middle to Upper
      Eocene whale-bearing succession in the Fayoum Depression. Egypt
      Sedimentology 57:446–476
      
      Google Scholar 

 2.   Abdel-Fattah ZA, Gingras MK, Caldwell MW, Pemberton SG, MacEachern JA
      (2016) The glossifungites ichnofacies and sequence stratigraphic analysis:
      a case study from middle to upper Eocene successions in Fayoum. Egypt
      Ichnos 23:157–179
      
      Google Scholar 

 3.   Abu El-Kheir GA (2010) Paleontological studies and sedimentological
      evolution in Wadi Elhitan district, Fayoum governorate, Egypt. Unpubl.
      M.Sc. Thesis. Cairo University, Egypt, 105p.

 4.   Akahane H, Furuno T, Miyajima H, Yoshikawa T, Yamamoto S (2004) Rapid wood
      silicification in hot spring water: an explanation of silicification of
      wood during the Earth’s history. Sediment Geol 169:219–228
      
      Google Scholar 

 5.   Al Dhwadi Z, Sallam ES (2019) Spheroidal “cannonballs” calcite-cemented
      concretions from the Fayoum and Bahariya depressions, Egypt: evidence of
      differential erosion by sand storms. Inter J of Earth Sci 108:2291–2293
      
      Google Scholar 

 6.   Alexandrowicz Z (2006) Geopark—nature protection category aiding the
      promotion of geoturism (Polish perspectives). Geoturism 2(5):3–13
      
      Google Scholar 

 7.   Alexandrowicz Z, WimbledonWA (1999) The concept of world lithosphere
      reserve. Memorie descrittive della Carta Geologica d’Italia: 347–35

 8.   Antić A, Tomić N (2017) Geoheritage and geotourism potential of the
      Homolje area (eastern Serbia). Acta Geoturistica 8(2):67–78
      
      Google Scholar 

 9.   Antić A, Tomić N, Đorđević T, Radulović M, Đević I (2020) Speleological
      objects becoming show caves: evidence from the Valjevo karst area in
      Western Serbia. Geoheritage 12:95.
      https://doi.org/10.1007/s12371-020-00517-9
      
      Article  Google Scholar 

 10.  Anan K, El Shahat A (2014) Provenance and sequence architecture of the
      Middle-Late Eocene Gehannam and Birket Qarun formations at Wadi Al Hitan,
      Fayoum Province. Egypt J Afri Earth Sci 100:614–625
      
      Google Scholar 

 11.  Andrews CW (1904) Notes on an expedition to the Fayoum Egypt, with
      description of some new mammals. Geol Mag 10:337–343
      
      Google Scholar 

 12.  Avelar S, Vasconcelos C, Mansur KL, Anjos SC, Vasconcelos GF (2018)
      Targeting sustainability issues at geosites: a study in Região dos Lagos,
      Rio de Janeiro, Brazil. Geoheritage 10:1–9
      
      Google Scholar 

 13.  Badawi BA (2008) Paleogene Proboscidea (Mammalla) from Fayoum Depression,
      Egypt: taxonomy and paleobiogeography. Master thesis, Cairo university,
      135 pp.

 14.  Beadnell HJL (1905) The topography and geology of the Fayoum Province of
      Egypt: Cairo, Survey Department, 101 p.

 15.  Began M, Višnić T, Djokić M, Vasiljevic DA (2017) Interpretation
      possibilities of geoheritage in southeastern Serbia—gorge and canyon
      study. Geoheritage 9:237–249
      
      Google Scholar 

 16.  Bitschene P, Schueller A (2011) Geo-education and geopark implementation
      in the Vulkaneifel European Geopark. GSA Field Guide 22:29–34
      
      Google Scholar 

 17.  Boley BB, Nickerson NP, Bosak K (2011) Measuring geotourism: developing
      and testing the geotraveler tendency scale (GTS). J Travel Res 50:567
      
      Google Scholar 

 18.  Bown TM (1982) Ichnofossils and rhizoliths of the nearshore fluvial Gabal
      Qatrani Formation (Oligocene), Fayoum province. Egypt Palaeogeogr
      Palaeoclimatol Palaeoecol 40:255–309
      
      Google Scholar 

 19.  Bown TM (1985) Maturation sequences in lower Eocene alluvial paleosols,
      Willwood Formation, northwest Wyoming, USA: In Kraus, M.J., ed., Field
      guide to trip 2, Fourth International Conference on Fluvial Sedimentology,
      Fort Collins, Colo.

 20.  Bown TM, Kraus MJ (1988) Geology and paleoenvironment of the Oligocene
      Gabal Qatrani Formation, Fayoum Depression. Egypt US Geological Survey
      Professional Paper 1452:1–60
      
      Google Scholar 

 21.  Bown TM, Kraus MJ, Wing SL, Fleagle JG, Tiffney BH, Simons EL, Vondra CF
      (1982 ) The Fayoum primate forest revisited: The Journal of Human
      Evolution11 : 603–632.

 22.  Bown TM, Simons EL (1984) First record of marsupials (Metatheria:
      Polyprotodonta) from the Oligocene in Africa. Nature 308:447–449
      
      Google Scholar 

 23.  Bowen BE, Vondra CF (1974) Paleoenvironmental interpretation of the
      Oligocene Gabal Qatrani Formation, Fayoum Depression. Annal Geol Surv,
      Egypt 4:115–138
      
      Google Scholar 

 24.  Božić S, Tomić N (2015) Canyons and gorges as potential geotourism
      destinations in Serbia: comparative analysis from two perspectives -
      general geotourists’ and pure geotourists’. Open Geosci 7(1):531–546
      
      Google Scholar 

 25.  Božić S, Tomić N, Pavić D (2014) Canyons as potential geotourism
      attractions of Serbia - comparative analysis of Lazar and Uvac canyons by
      using M-GAM model. Acta Geoturistica 5(2):18–30
      
      Google Scholar 

 26.  Brilha J (2016) Inventory and quantitative assessment of geosites and
      geodiversity sites: a review. Geoheritage 8(2):119–134
      
      Google Scholar 

 27.  Brilha J, Pereira DI, Pereira P (2016) Promoting education and training:
      an online course on geoparks. In 7th International Conference on UNESCO
      Global Geoparks, Abstract Book, English Riviera UNESCO Global Geopark,
      Torquay, UK, p 147

 28.  Brocx M, Semeniuk V (2007) Geoheritage and geoconservation history,
      definition, scope, and scale. J Roy Soc WAust 90:53–87
      
      Google Scholar 

 29.  Bruno DE, Crowley BE, Gutak M, Moroni A, Nazarenko OV, Oheim KB, Ruban DA,
      Tiess G, Zorina SO (2014) Paleogeography as geological heritage:
      developing geosite classification. Earth-Science Rev 138:300–312
      
      Google Scholar 

 30.  Bruschi VM, Cendrero A (2005) Geosite evaluation; can we measure
      intangible values? Alpine Mediterr Quat 18(1):293–306
      
      Google Scholar 

 31.  Bryan WB, Stephens RS (1993) Coastal bench formation at Hanauma Bay, Oahu.
      Hawaii. Geol Soci Amer Bull 105(3):377–386
      
      Google Scholar 

 32.  Carr MH (2009) The surface of Mars. Cambridge University Press.
      https://doi.org/10.1017/CBO9780511536007
      
      Article  Google Scholar 

 33.  Citiroglu HK, Isik S, Pulat O (2017) Utilizing the geological diversity
      for sustainable regional development, a case study-Zonguldak (NW Turkey).
      Geoheritage 9:211–223
      
      Google Scholar 

 34.  Coratza P, Giusti C (2005) Methodological proposal for the assessment of
      the scientific quality of geomorphosites. Alpine Mediterr Quat
      18(1):307–313
      
      Google Scholar 

 35.  Dabezies JM (2011) Methodological proposal for the selection of
      archaeologicalsites to be used in the development of a product for
      tourism. Intersecc Antropol 12:305–318
      
      Google Scholar 

 36.  Daniels FJ, Dayvault RD (2006) Ancient forests. A closer look at fossil
      wood; Western Colorado Publishing Company: Grand Junction, CO, USA, p.
      450. ISBN 978–0966293814.

 37.  Davoli, P., 2012. The archaeology of the Fayum. In: Riggs, C. (Ed.), The
      Oxford Handbook of Roman Egypt. Oxford University Press, Oxford, pp.
      152e170.

 38.  De Lima FF, Brilha JB, Salamuni E (2010) Inventorying geological heritage
      in large territories: a methodological proposal applied to Brazil.
      Geoheritage 2:91–99. https://doi.org/10.1007/s12371-010-0014-9
      
      Article  Google Scholar 

 39.  DiMichele WA, Aronson RB (1992) The Pennsylvanian-Permian vegetational
      transition: a terrestrial analogue to the onshore-offshore hypothesis.
      Evolution 46:807–824
      
      Google Scholar 

 40.  DiMichele WA, Pfefferkorn HW, Gastaldo RA (2001) Response of late
      Carboniferous and early Permian plant communities to climate change. Annu
      Rev Earth Planet Sci 29:461–487
      
      Google Scholar 

 41.  Dingwall PR (2000) Legislation and international agreements: the
      integration of the geological heritage in nature conservation policies.
      In: Beretina D, Wimbledon WA, Gallego E (eds) Geological heritage: its
      conservation and management. Sociedad Geológica de España, Madrid, pp
      15–28
      
      Google Scholar 

 42.  Dernbach, U., 1996. Petrified Forests: the world’s 31 most beautiful
      petrified forests. D’Oro, Heppenheim, 190p.

 43.  Dernbach U, Tidwell WDI (2002) Secrets of petrified plants—fascination
      from millions of years; D’ORO Publishers: Heppenheim, Germany, p. 232.
      ISBN 978–3932181047.

 44.  Dixon G (1995) Geoconservation: an international review and strategy for
      Tasmania. A Report to the Australian Heritage Commission, Occasional Paper
      No. 35, Parks & Wildlife Service, Tasmania, 101

 45.  Dixon G (1996) Geoconservation: an international review and strategy for
      Tasmania. Parks and Wildlife Service, Tasmania, Miscellaneous Report,
      Hobart, Tas
      
      Google Scholar 

 46.  Dolson J, El Barkoky A, Weher F, Gingerich Ph,Porchazka D, Shann M (2002)
      Field trip No.7 The Eocene and Oligocene paleoecology and paleogeography
      of whale valley and Fayoum basins: implications of hydrocarbon exploration
      in the Nile delta and Eco-Tourism in greater Fayoum basin. Amer Ass of
      Petrol Geol, 79.

 47.  Dony AN (2017) Systematic studies of geoheritage in Jeli District,
      Kelantan, Malaysia. Geoheritage 9:19–33
      
      Google Scholar 

 48.  Dowling RK (2011) Geotourism’s global growth. Geoheritage 3:1–13
      
      Google Scholar 

 49.  Dowling RK, Newsome D (eds) (2006) Geotourism: sustainability, impacts and
      management. Elsevier, Oxford
      
      Google Scholar 

 50.  Eder W (2008) Geoparks - promotion of earth sciences through geoheritage
      conservation, education and tourism. J Geol Soc India 72:149–154
      
      Google Scholar 

 51.  Eder FW, Patzak M (2004) Geoparks—geological attractions: a tool for
      public education, recreation and sustainable economic development.
      Episodes-Newsmagazine Int Union Geol Sci 27(3):162–164
      
      Google Scholar 

 52.  El Anbaawy MI, Helal SA, Abu El-Kheir GA (2018) Contribution of the
      taphonomic significances of marine mammals in Wadi El-Hitan and northern
      Lake Qaroun sectors, Fayoum. Egypt Egyptian J of Geology 62:401–422
      
      Google Scholar 

 53.  El Araby A, El Barkooky AN (2000) Stratigraphic architecture and facies
      evolution of the Oligocene Gabal Qatrani, North Fayoum, Egypt. The 5th Int
      Conf on the Geol of the Arab World. Cairo University 3:1175–1208
      
      Google Scholar 

 54.  El Khashab B (1977) A brief account on Egyptian Paleogene Proboscidea.
      Annal Geol Surv, Egypt 9:245–260
      
      Google Scholar 

 55.  Endere ML, Prado JL (2014) Characterization and valuation of
      paleontological heritage: a perspective from Argentina. Geoheritage.
      https://doi.org/10.1007/s12371-014-0124-x
      
      Article  Google Scholar 

 56.  El-Fawal FM, El-Asmar HM, Sarhan M (2013) Depositional evolution of the
      middle-upper Eocene rocks, Fayoum area. Egypt Arab J Geosci 6:749–760
      
      Google Scholar 

 57.  El Saadawi W (2006) On the fossil flora of Gabal Qatrani area, Fayoum.
      Egypt Taeckholmia 26:131–140
      
      Google Scholar 

 58.  El Saadawi W, Kamal El Din MM (2004) Termination species from Gabal
      Qatrani Formation at Widan El Faras. Fayoum Egypt Taeckholmia 24:63–78
      
      Google Scholar 

 59.  El Saadawi W, Youssef SGM, Kamal El Din MM (2004) Fossil woods of Egypt.
      II. Seven tertiary palmoxylon species new to the country. Rev Palaeob
      Palynol 129:199–211
      
      Google Scholar 

 60.  Elrick M (1995) Cyclostratigraphy of Middle Devonian carbonates of the
      eastern Great Basin. J Sediment Res B 65:61–79
      
      Google Scholar 

 61.  Farsani NT, Coelho C, Costa C (2011) Geotourism and geoparks as novel
      strategies for socio-economic. Int J Tour Res 13:68–81
      
      Google Scholar 

 62.  Farsani N, Coelho C, Costa C, Amrikazemi A (2014) Geo-knowledge management
      and geoconservation via geoparks and geotourism. Geoheritage 6:185–192
      
      Google Scholar 

 63.  Fleagle JG, Brown TM, Obradovich JD, Simons EL (1986) How old are the
      Fayoum primates? In: Else JG, Lee PC (eds) Primate evolution. Cambridge
      University Press, Cambridge, pp 4–17
      
      Google Scholar 

 64.  Fung CKW, Jim CY (2015) Unraveling Hong Kong Geopark experience with
      visitor-employed photography method. Appl Geogr 62:301–313
      
      Google Scholar 

 65.  Gameil M, Al Anbaawy M, Abdel Fattah M, Abu El-Kheir G (2016) Lithofacies
      and biofacies characteristics and whales skeletons distribution in the
      Eocene rock units of Fayoum Area. Egypt J Afr Earth Sci 116:42–55
      
      Google Scholar 

 66.  Gingerich PD (1992) Marine mammals (Cetacea & Sirenia) from the Eocene of
      Gabal Mokattam and Fayoum, Egypt: stratigraphy, age, and paleoenvironment.
      Papers on Paleontology, Michigan University 30:1–84
      
      Google Scholar 

 67.  Gingerich PD (1993) Marine Mammals (Cetacea and Sirenia) from the Eocene
      of Gebel Mokattam and Fayum, Egypt; Stratigraphy, Age and
      Paleoenvironments. University of Michigan, Papers on Paleontology No. 30,
      84 pp

 68.  Giurginca A, Munteanu CM, Stanomir ML, Niculescu G, Giurginca M (2010)
      Assessment of potentially toxic metals concentration in karst areas of the
      Mehedinti plateau geopark (Romania). Carpathian Journal of Earth and
      Environmental Sciences 5(1):103–110
      
      Google Scholar 

 69.  Gordon JE (2019) Geoconservation principles and protected area management.
      International Journal of Geoheritage and Parks 7:199–210.
      https://doi.org/10.1016/j.ijgeop.2019.12.005
      
      Article  Google Scholar 

 70.  Goudie A (2008) Yardang landforms from Kharga Oasis, south-western Egypt.
      Z Geomorph N F Suppl-Bd 116:97–112, Aeolian Geomorphology: Papers from
      14th international Conference on Aeolian Research, Oxford

 71.  Gray M (2004) Geodiversity. Wiley, Valuing and conserving abiotic nature.
      Chichester, p 434
      
      Google Scholar 

 72.  Guiraud R, Bosworth W (1997) Senonian basin inversion and rejuvenation of
      rifting in Africa and Arabia: synthesis and implications to plate-scale
      tectonics. Tectonophysics 282:39–82
      
      Google Scholar 

 73.  Guiraud R, Bosworth W, Thierry J, Delphanque A (2005) Phanerozoic
      geological evolution of northern and central Africa: overview. J Afr Earth
      Sci 43:83–143
      
      Google Scholar 

 74.  Gurnee J (1994) Management of some unusual features in the show caves of
      the United States. Int J Speleol 23(1):2
      
      Google Scholar 

 75.  Harrell JA, Bown TM (1995) An old kingdom basalt quarry at Widan El Faras
      and the quarry road to lake Moeris. J Amer Res Centre in Egypt 32:71–91
      
      Google Scholar 

 76.  Heikal MA, Hassan MA, El Sheshtawi Y (1983) The Cenozoic basalt of Gabal
      Qatrani, Western Desert, Egypt as an example of continental tholeiitic
      basalt. Ann Geol Surv Egypt 13:193–209
      
      Google Scholar 

 77.  Helmy E, Cooper C (2002) An assessment of sustainable tourism planning for
      the archaeological heritage: the case of Egypt. J Sustain Tour 10:514–535
      
      Google Scholar 

 78.  Henriques MH, Brilha J (2017) UNESCO Global Geoparks: a strategy towards
      global understanding and sustainability. Episodes 40:349–355
      
      Google Scholar 

 79.  Henriques MH, Pena dos Reis R (2015) Framing the palaeontological heritage
      within the geological heritage: an integrative vision. Geoheritage
      7:249–259. https://doi.org/10.1007/s12371-014-0141-9
      
      Article  Google Scholar 

 80.  Hooke RLB (2000) On the history of humans as geomorphic agents. Geology
      28:843–846
      
      Google Scholar 

 81.  Hose TA (1996) Geotourism, or can tourists become casual rock hounds? In:
      Bennett MR et al (eds) Geology at your doorstep: the role of urban geology
      in earth heritage conservation. The Geological Society, London, pp 207–228
      
      Google Scholar 

 82.  Hose TA (2000) Geological interpretation and geoconservation promotion for
      tourists. In: Barretino D, Wimbledon WAP, Gallego E (eds) Geological
      heritage: its conservation and management. Sociedad Geologica de
      Espana/Instituto Technologico GeoMinero de Espana/ProGEO, Madrid, pp
      127–146
      
      Google Scholar 

 83.  Horváth G, Csüllög G (2013) A new Slovakian-Hungarian cross-border geopark
      in Central Europe —possibility for promoting better connections between
      the two countries. European Countryside 5:146–162
      
      Google Scholar 

 84.  Huggett JL (2007) Fundamentals of geomorphology. Routledge, New York, New
      York, pp 978-0-415-39084–2
      
      Google Scholar 

 85.  Issawi B (1968) The geology of the kurkur-dungul area. General egyptian
      organization for geological research and mining. Geol Surv Pap 46:1–102
      
      Google Scholar 

 86.  King C, Underwood C, Steurbaut E (2014) Eocene stratigraphy of the Wadi
      Al- Hitan world heritage site and adjacent areas (Fayoum, Egypt).
      Stratigraphy 11:185–234
      
      Google Scholar 

 87.  Kirillova K, Fu X, Lehto X, Cai L (2014) What makes a destination
      beautiful? Dimensions of tourist aesthetic judgment. Tour Manage
      42:282–293
      
      Google Scholar 

 88.  Issawi B, Francis M, Youssef A, Osman R (2009) The Phanerozoic of Egypt: a
      geodynamic approach. Geological Survey of Egypt, Cairo, p 589
      
      Google Scholar 

 89.  Jonić V (2018) Comparative analysis of Devils town and Bryce canyon
      geosites by applying the modified geosite assessment model (MGAM). Res Rev
      Dep Geogr Tourism Hotel Manag 47(2):113–125
      
      Google Scholar 

 90.  Khalaf EA, Abdel Wahed M, Mayed A, Mokhtar H (2019) Volcanic geosites and
      their geoheritage values preserved in monogenetic Neogene volcanic field,
      Bahariya depression, Western Desert, Egypt: implication for climatic
      change-controlling volcanic eruption. Geoheritage 11:855–873.
      https://doi.org/10.1007/s12371-018-0336-6
      
      Article  Google Scholar 

 91.  Kubalíková L, Kirchner K (2016) Geosite and geomorphosite assessment as a
      tool for geoconservation and geotourism purposes: a case study from
      Vizovická vrchovina highland (eastern part of the Czech Republic).
      Geoheritage 8:5–14
      
      Google Scholar 

 92.  Lazzari M, Aloia A (2014) Geoparks, geoheritage and geotourism:
      opportunities and tools in sustainable development of the territory. Geoj
      Tour Geosites 13:8–9
      
      Google Scholar 

 93.  Liu HL (2016) Experience and inspiration from construction of United
      States national parks and gateway communities. Eng Sci 5:100–108
      
      Google Scholar 

 94.  Luthardt L, Rößler R, Schneider JW (2016) Palaeoclimatic and site-specific
      conditions in the early Permian fossil forest of
      Chemnitz—Sedimentological, geochemical and palaeobotanical evidence.
      Palaeogeogr Palaeoclimatol Palaeoecol 441:627–652
      
      Google Scholar 

 95.  Manuel GR, Enrique FS (2017) Geo-climbing and environmental education: the
      value of La Pedriza Granite Massif in the Sierra de Guadarrama national
      park, Spain. Geoheritage 9:141–151
      
      Google Scholar 

 96.  Margiotta S, Sansò P (2014) The geological heritage of Otranto-Leuca Coast
      (Salento, Italy). Geoheritage 6:305–316
      
      Google Scholar 

 97.  Marlina E (2016) Geotourism as a strategy of geosite empowerment towards
      the tourism sustainability in Gunungkidul Regency. Indonesia Int J Smart
      Home 10:131–148
      
      Google Scholar 

 98.  Mariotto FP, Venturini C (2017) Strategies and tools for improving earth
      science education and popularization in museums. Geoheritage 9:187–194
      
      Google Scholar 

 99.  Mashaal NM, Sallam ES, Khater TM (2020) Mushroom rock, inselberg, and
      butte desert landforms (Gebel Qatrani, Egypt): evidence of wind erosion.
      Inter J Earth Sci. https://doi.org/10.1007/s00531-020-01883-z
      
      Article  Google Scholar 

 100. Matysovà P, Ronny R, Götz JL, Jaromír F, Taylor G, Sakala E, Grygar J,
      Tomáš J (2010) Alluvial and volcanic pathways to silicified plant stems
      (Upper Carboniferous-Triassic) and their taphonomic and paleoenvironmental
      meaning. Palaeogeography, Palaeoclimate, Palaeoecology 292(1–2):17
      
      Google Scholar 

 101. McKeever P, Zouros N, Patzak M, Weber J (2010) The UNESCO global network
      of national geoparks. In: Newsome D, Dowling R (eds) Geotourism: the
      tourism of geology and landscape. Goodfellow Publishers Ltd, Oxford, pp
      221–230
      
      Google Scholar 

 102. Melinte-Dobrinescu MC, Brustur T, Jipa D, Macaleţ R, Ion G, Ion E, Popa A,
      Ion S, Briceag A (2017) The geological and palaeontological heritage of
      the Buzău Land geopark (Carpathians, Romania). Geoheritage 9:225–236
      
      Google Scholar 

 103. Mikhailenko AV, Nazarenko OV, Ruban DA, Zayats PP (2017) Aesthetics-based
      classification of geological structures in outcrops for geotourism
      purposes: a tentative proposal. Geologos 23:45–52
      
      Google Scholar 

 104. Moroni A, Gnezdilova VV, Ruban DA (2015) Geological heritage in
      archaeological sites: case examples from Italy and Russia. Proc Geol Assoc
      126:244–251
      
      Google Scholar 

 105. Moustafa YS (1974) Critical observations of the occurrence of Fayoum
      fossil vertebrates. Annal Geol Surv, Egypt 4:41–68
      
      Google Scholar 

 106. Mucivuna VC, Reynard E, Garcia MGM (2019) Geomorphosites assessment
      methods: comparative analysis and typology. Geoheritage 11:1799–1815
      
      Google Scholar 

 107. Nenonen K, Johansson P, Sallasmaa O, Sarala P, Palmu J (2018) The
      inselberg landscape in Finnish Lapland: a morphological study based on the
      LiDAR data interpretation. Bull Geol Soc Finl 90:239–256
      
      Google Scholar 

 108. Newsome D, Dowling R (2005) The scope and nature of geoturism. DowlingR,
      NewsomeD(eds) Geoturism. Elsevier, Amsterdam, pp 3–25
      
      Google Scholar 

 109. Newsome D, Moore S, Dowling R (2013) Natural area tourism: ecology,
      impacts and management, 2nd edn. Channel View Publications, Clevedon
      
      Google Scholar 

 110. Olafsdottir R (2019) Geotourism Geosciences 9:48
      
      Google Scholar 

 111. Olafsdottir R, Dowling R (2014) Geotourism and geoparks-a tool for
      geoconservation and rural development in vulnerable environments: a case
      study from Iceland. Geoheritage 6:71–87
      
      Google Scholar 

 112. Pál M, Albert G (2018) Comparison of geotourism assessment models: and
      experiment in Bakony-Balaton UNSECO Global Geopark. Hungary. Acta
      Geoturistica 9(2):1–13
      
      Google Scholar 

 113. Panizza M (2001) Geomorphosites: concepts, methods and example of
      geomorphological survey. Chin Sci Bull 46:4–6
      
      Google Scholar 

 114. Pereira P, Pereira D, Caetano-Alves MI (2007) Geomorphosite assessment in
      Montesinho Natural Park (Portugal). Geogr Helv 62(3):159–168
      
      Google Scholar 

 115. Philippe M, Boonchai N, Ferguson DK, Hui J, Songtham W (2013) Giant trees
      from the Middle Pleistocene of Northern Thailand. Quat Sci Rev 65:1–4
      
      Google Scholar 

 116. Popa RG, Popa DA, Alexandru A (2017a) The SEA and Big-S models for
      managing geosites as resources for local communities in the context of
      rural geoparks. Geoheritage 9:175–186
      
      Google Scholar 

 117. Plysnina E, Sallam E, Ruban D (2016) Geological heritage of the Bahariya
      and Farafra Oases, the central Western Desert. Egypt J Afr Earth Sci
      116:151–159
      
      Google Scholar 

 118. Popa RG, Popa DA, Andrășanu A (2017b) The SEA and Big-S models for
      managing geosites as resources for local communities in the context of
      rural geoparks. Geoheritage 9:175–186.
      https://doi.org/10.1007/s12371-016-0192-1
      
      Article  Google Scholar 

 119. Pralong JP (2005) A method for assessing the tourist potential and use of
      geomorphological sites. Géomorphol Relief Process Environ 3:189–196
      
      Google Scholar 

 120. Prosser CD (2013) Our rich and varied geoconservation portfolio: the
      foundation for the future. Proc Geologists Assoc 124:568–580
      
      Google Scholar 

 121. Ramsay T (2017) Forest Fawr Geoparkda UNESCO Global Geopark distinguished
      by its geological, industrial and cultural heritage. Proc Geologists Assoc
      128:500–509
      
      Google Scholar 

 122. Rapprich V, Lisec M, Fiferna P, Závada P (2016) Application of modern
      technologies in popularisation of the Czech Volcanic. Geoheritage
      50:106–115
      
      Google Scholar 

 123. Reynard E (2008) Scientific research and tourist promotion of
      geomorphological heritage. Geogr Fis Din Quat 31:225–230
      
      Google Scholar 

 124. Reynard E, Coratza P (2007) Geomorphosites and geodiversity: a new domain
      of research. Geogr Helv 62:138–139
      
      Google Scholar 

 125. Reynard E, Bussard J, Grangier L, Martin S (2016) Integrated approach for
      the inventory and management of geomorphological heritage at the regional
      scale. Geoheritage 8(1):43–60. https://doi.org/10.1007/s12371-015-0153-0
      
      Article  Google Scholar 

 126. Reynard E, Fontana G, Kozlik L, Scapozza C (2007) A method for assessing
      “scientific” and “additional values” of geomorphosites. Geogr Helv
      62(3):148–158
      
      Google Scholar 

 127. Rößler R, Barthel M, Rotliegend N (1998) Taphocoenoses preservation
      favoured by rhyolithic explosive volcanism. Freib Forsch 44:59–101
      
      Google Scholar 

 128. Rößler R, Zierold T, Feng Z, Kretzschmar R, Merbitz M, Annacker V,
      Schneider JW (2012) A snapshot of an early Permian ecosystem preserved by
      explosive volcanism: new results from the Chemnitz Petrified Forest,
      Germany. Palaios 27:814–834
      
      Google Scholar 

 129. Ross D, Saxena G, Correia F, Deutz P (2017) Archaeological tourism: a
      creative approach. Ann Tour Res 67:37–47
      
      Google Scholar 

 130. Ruban DA (2015) Geotourism - a geographical review of the literature. Tour
      Manag Perspect 15:1–15
      
      Google Scholar 

 131. Ruban DA (2017) Geodiversity as a precious national resource: a note on
      the role of geoparks. Resour Policy 53:103–108
      
      Google Scholar 

 132. Ruban DA, Sallam ES, Khater TM, Ermolaey UA (2021) Golden Triangle
      Geosites: preliminary geoheritage assessment in a geologically rich area
      of East Egypt. Geoheritage 13:54.
      https://doi.org/10.1007/s12371-021-00582-8
      
      Article  Google Scholar 

 133. Said R (1962) The geology of Egypt: Amsterdam, Elsevier, 377p.

 134. Said R (1990) The geology of Egypt. Balkema, 734P.

 135. Sallam ES, Ponedelnik AA, Tiess G, Yashalova NN, Ruban DA (2018a) The
      geological heritage of the Kurkur-Dungul area in southern Egypt. J Afr
      Earth Sci 137:103–115
      
      Google Scholar 

 136. Sallam ES, Ruban DA (2017) Palaeogeographical type of the geological
      heritage of Egypt: a new evidence. J Afr Earth Sci 129:739–750
      
      Google Scholar 

 137. Sallam ES, Fathy E, Ruban DA, Ponedelnik AA, Yashalova NN (2018b)
      Geological heritage diversity in the Fayoum Oasis (Egypt): a comprehensive
      assessment. J Afr Earth Sci 140:212–224
      
      Google Scholar 

 138. Scurfield G, Segnit ER (1984) Petrification of wood by silica minerals.
      Sed Geol 39:149–167
      
      Google Scholar 

 139. Shamah K, Blondeau A, Calvez YL, Berchnielsen K, Toumarkine M (1982)
      Biostratigraphic de IʼEocene de La Formation El Midawarah region de Wadi
      El Rayan Province de Fayoum area, Egypte. Cahiers De Micropaleontologie
      1:91–104
      
      Google Scholar 

 140. Sharples EB (2002) Australia’s geoheritage history of study, a new
      inventory of geosites and applications to geotourism and geoparks.
      Geoheritage 2:39–56
      
      Google Scholar 

 141. Seiffert E. R, Bown T. M, Clyde W. C, and Simons E. L (2008): Geology,
      paleoenvironment, and age of Birket Qarun Locality 2 (BQ-2), Fayum
      Depression, Egypt. In Fleagle JG & Gilbert CC (eds) Elwyn L. Simons: a
      search for origins. New York: Springer, pp. 71–86.

 142. Serrano E, González-Trueba JJ (2005) Assessment of geomorphosites in
      natural protected areas: the Picos de Europa National Park (Spain).
      Géomorphologie Formes Process Environ 3:197–208
      
      Google Scholar 

 143. Shirai N (2016) The desert Fayoum : revisiting a neolithic farming
      community in Egypt. Antiquity 90:1181–1195
      
      Google Scholar 

 144. Shirai N (2017) Teething problems in cereal cultivation in prehistoric
      Egypt: a restudy of Fayoum Neolithic sickle blades. Azania 52:209–232
      
      Google Scholar 

 145. Simon El (1968) African Oligocene mammals: introduction, history, and
      faunal succession. Pebody Museum of Natural History, Yale University
      Bulletin 28, 105pp

 146. Simon El (2005) Eocene and Oligocene mammals of the Fayoum, Egypt. 1st
      International Conference on the Geology of the Tethys, Cairo university 2:
      439–450.

 147. Simmons EL (1967) The earliest apes. Sci Am 217:28–35
      
      Google Scholar 

 148. Simons EL (1986) Early Cenozoic mammalian faunas, Fayoum Province, Egypt.
      Part 1. African Oligocene mammals: introduction, history of study, and
      faunal succession. Bulletin of the Peabody Museum of Natural History, Yale
      University 28:1–21

 149. Simons EL (2005) The cranium of Parapithecus grangeri, an Egyptian
      Oligocene anthropoidean primate. Proceedings of the National Academy of
      Sciences of the United States of America  98:7892–7897

 150. Simons EL, Rasmussen DT, Bown TM, Chatrath PS (1994) The Eocene origin of
      anthropoid primates: Adaptation, evolution and diversity; in Fleagle J.G&
      Kay R. F. (eds) Anthropoid Origins, New York, Plenum Press, pp. 179–202

 151. Simmons EL, Wood AE (1968) Early Cenozoic faunas, Fayoum Province, Egypt.
      Bull Peabody Museum of Natural History, Yale University 28:1–105
      
      Google Scholar 

 152. Simons EL, Cornero S, Bown TM (1996) Taphonomy of fossil vertebrate Quarry
      L.41, Upper Eocene, Fayum Depression. Egypt Proceeding of the Egyptian
      Geological Survey Centennial Conference, Special Publication, Paper
      75:785–791
      
      Google Scholar 

 153. _Strba L, Krk, B, Molok MA, damkovi J ( 2016) Geotourism and geoparks – a
      sustainable form of environmental protection. In: Production Management
      and Engineering Sciences - Scientific Publication of the International
      Conference on Engineering Science and Production Management, ESPM 2015.
      Tatranska Strba, pp. 279–284.

 154. Swedan AH (1986) Contribution to the geology of Fayoum area. Ph.D thesis,
      Cairo university, 255pp

 155. Swedan AH (1993) Stratigraphy of the Eocene sediments in the Fayoum area.
      Ann Geol Surv Egypt 18:157–166
      
      Google Scholar 

 156. Simon E, Rasmussen DT (1990) Vertebrate paleontology of Fayoum: history of
      research, faunal review and future prospects. In: Said R (ed) Geology of
      Egypt. Balkema, Rotterdam, pp 627–638
      
      Google Scholar 

 157. Suzuki DA, Takagi H (2018) Evaluation of geosite for sustainable planning
      and management in geotourism. Geoheritage 10:123–135
      
      Google Scholar 

 158. Tomić N, Antić A, Marković SB, Đorđević T, Zorn M, Valjavec MB (2019)
      Exploring the potential for speleotourism development in Eastern Serbia.
      Geoheritage 11(2):359–369
      
      Google Scholar 

 159. Tomić N, Marković SB, Antić A, Tešić D (2020) Exploring the potential for
      geotourism development in the Danube Region of Serbia. Int J Geoheritage
      Parks 8(2):123–139
      
      Google Scholar 

 160. Tawadros E (2011) Geology of North Africa. CRC Press, London, p 930
      
      Google Scholar 

 161. Twidale CR (1981) Granitic inselbergs: domed, block-strewn and
      castellated. Geogr J 147:54–71
      
      Google Scholar 

 162. Twidale R, Vidal Romani JR (2005) Landforms and Geology of Granite
      Terrains 2005. CRC Press, London, p 354
      
      Google Scholar 

 163. UNESCO (2016) UNESCO Global Geoparks. http://unesdoc.unesco.org/
      images/0024/002436/243650e.pdf. Accessed Feb 2016

 164. Uroš S, Aleksandra T (2018) A new quantitative model for comprehensive
      geodiversity evaluation: the Škocjan Caves Regional Park, Slovenia.
      Geoheritage 10:39–48
      
      Google Scholar 

 165. Vondra CF (1974) Upper Eocene transitional and near shore marine Qasr El
      Sagha Formation, Fayoum Depression. Egypt Annal Geol Surv, Egypt 4:79–94
      
      Google Scholar 

 166. Vujičić MD, Vasiljević ĐA, Marković SB, Hose TA, Lukić T, Hadžić O,
      Janićević S (2011) Preliminary geosite assessment model (gam) and its
      application on Fruška gora mountain, potential geotourism destination of
      Serbia. Acta Geogr Slov 51(2):361–376
      
      Google Scholar 

 167. Vuković S, Antić A (2019) Speleological approach for geotourism
      development in Zlatibor county (West Serbia). Turizam 23(1):53–68
      
      Google Scholar 

 168. Wang L, Tian M, Wang L (2015a) Geodiversity, geoconservation and
      geotourism in Hong Kong global geopark of China. Proc Geol Assoc
      126(3):426–437
      
      Google Scholar 

 169. Wang SJ,Wan YS, Xu P, Zheng ZQ, Yao CM, Yang EX, Song ZY,Wang NJ,Meng YH,
      XiaoWG, Ren P, ZhangY(2015b) Characteristics of major geological heritages
      of the geoparks in Shandong province. Acta Geosci Sin 5:669–684

 170. Wartiti M, Malaki A, Zahraoui M, Ghannouchi A, Gregorio F (2008) Geosites
      inventory of the northwestern tabular middle atlas of Morocco. Environ
      Geol 55(2):415–422
      
      Google Scholar 

 171. Wilkinson BH (2005) Humans as geologic agents: a deep-time perspective.
      Geology 33:161–164
      
      Google Scholar 

 172. Wing SL, Hasiotis ST, Bown TM (1995) First ichnofossils of
      flank-buttressed trees (late Eocene). Fayoum Depression Egypt Ichnos
      3:281–286
      
      Google Scholar 

 173. Woo KS, Sohn YK, Yoon SH, San Ahn U, Spate A (2013) Jeju Island geopark—a
      volcanic wonder of Korea. Springer, Berlin Heidelberg, p 88p
      
      Google Scholar 

 174. Wright VP (1994) Paleosols in shallow marine carbonate sequences. Earth
      Sci Rev 35:367–395
      
      Google Scholar 

 175. Wright VP, Platt NH, Wimbledon WA (1988) Biogenic laminarcalcretes:
      evidence of calciwed root-mat horizons in paleosols. Sedimentology
      35:603–620
      
      Google Scholar 

 176. Yılmaz A (2002) Jeolojik Mirasımız. Bilim ve Teknik 416:92–93, Ankara.

 177. Zhu HS, Cheng WJ, Ren LZ (2013) US national parks’ administration system.
      Urban Problems 5:90–95
      
      Google Scholar 

 178. Zangmo Tefogoum G, Kagou Dongmo A, Nkouathio DG, Wandji P, Gountie Dedzo M
      (2017) Geomorphological features of the Manengouba volcano (Cameroon
      line): assets for potential geopark development. Geoheritage 6:225–239
      
      Google Scholar 

 179. Zouros NC (2007) Geomorphosite assessment and management in protected
      areas of Greece Case study of the Lesvos island & ndash; coastal
      geomorphosites. Geogr Helv 62(3):169–180
      
      Google Scholar 

 180. Zouros N (2004) The European Geoparks Network. Geological heritage
      protection and local development. Episodes 27(3):165–171
      
      Google Scholar 

 181. Zouros N, McKeever P (2004) The European geoparks network. Episodes
      27:165–171
      
      Google Scholar 

Over 10 million scientific documents at your fingertips

Switch Edition
 * Academic Edition
 * Corporate Edition

 * Home
 * Impressum
 * Legal information
 * Privacy statement
 * California Privacy Statement
 * How we use cookies
 * Manage cookies/Do not sell my data
 * Accessibility
 * FAQ
 * Contact us
 * Affiliate program

Not logged in - 138.199.38.133

Not affiliated

Springer Nature

© 2022 Springer Nature Switzerland AG. Part of Springer Nature.


YOUR PRIVACY

We use cookies to make sure that our website works properly, as well as some
‘optional’ cookies to personalise content and advertising, provide social media
features and analyse how people use our site. By accepting some or all optional
cookies you give consent to the processing of your personal data, including
transfer to third parties, some in countries outside of the European Economic
Area that do not offer the same data protection standards as the country where
you live. You can decide which optional cookies to accept by clicking on ‘Manage
Settings’, where you can also find more information about how your personal data
is processed. Further information can be found in our privacy policy.

Accept All Cookies Manage Preferences