dl.acm.org Open in urlscan Pro
172.64.145.167  Public Scan

URL: https://dl.acm.org/doi/10.1145/1322432.1322433
Submission: On May 22 via api from US — Scanned from DE

Form analysis 3 forms found in the DOM

Name: defaultQuickSearchGET /action/doSearch

<form action="/action/doSearch" name="defaultQuickSearch" method="get" title="Quick Search" class="quick-search--form">
  <div class="quick-search--input">
    <div class="input-group option-0"><label for="AllFieldf73847c0-d936-48ec-9bf9-139b3828507f" class="sr-only">Search ACM Digital Library</label><input type="search" autocomplete="off" id="AllFieldf73847c0-d936-48ec-9bf9-139b3828507f-cloned"
        name="AllField" placeholder="Search ACM Digital Library" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3" data-publication-titles-conf="3" data-history-items-conf="3"
        data-group-titles-conf="3" value="" class="auto-complete quick-search__input cloned-with-ids"></div>
  </div>
  <div class="quick-search--button"><button type="submit" title="Search" aria-label="Search" class="btn quick-search__button icon-Icon_Search"><span class="sr-only">Search</span><span>Search</span></button></div>
</form>

Name: defaultQuickSearchGET /action/doSearch

<form action="/action/doSearch" name="defaultQuickSearch" method="get" title="Quick Search" class="quick-search--form cloned hidden-xs hidden-sm">
  <div class="quick-search--input">
    <div class="input-group option-0"><label for="AllFieldf73847c0-d936-48ec-9bf9-139b3828507f" class="sr-only">Search ACM Digital Library</label>
      <div class="autoComplete_wrapper" role="combobox" aria-owns="autoComplete_list_1" aria-haspopup="true" aria-expanded="false" aria-label="Enter a text or select an option"><input type="search" autocomplete="off"
          id="AllFieldf73847c0-d936-48ec-9bf9-139b3828507f" name="AllField" placeholder="Search ACM Digital Library" data-auto-complete-max-words="7" data-auto-complete-max-chars="32" data-contributors-conf="3" data-topics-conf="3"
          data-publication-titles-conf="3" data-history-items-conf="3" data-group-titles-conf="3" value="" class="auto-complete quick-search__input" aria-controls="autoComplete_list_1" aria-autocomplete="both"></div>
    </div>
    <ul id="autoComplete_list_1" role="listbox" hidden="" class="autoComplete rlist"></ul>
  </div>
  <div class="quick-search--button"><button type="submit" title="Search" aria-label="Search" class="btn quick-search__button icon-Icon_Search"><span class="sr-only">Search</span><span>Search</span></button></div>
</form>

POST /action/exportCiteProcCitation

<form action="/action/exportCiteProcCitation" method="post" target="_blank"><input type="hidden" name="content" value=""><input type="hidden" name="dois" value=""><input type="hidden" name="format" value="">
  <fieldset class="input-group"><label for="citation-format" class="visibility-hidden">Select Citation format</label><select id="citation-format" data-csl-doi="10.1145/1322432.1322433" aria-label="Select Citation format">
      <option value="bibtex" data-format="bibTex">BibTeX</option>
      <option value="endNote" data-format="endNote">EndNote</option>
      <option value="acm" data-format="text">ACM Ref</option>
    </select><span class="select-arrow"><i class="icon-bottom-arrow"></i></span></fieldset>
  <ul class="rlist tab__content">
    <li id="allResultstab" aria-labelledby="allResults" role="tabpanel" class="tab__pane">
      <div class="all-results-tab-container">
        <div class="hidden warning-message mb-2">Please download or close your previous search result export first before starting a new bulk export.</div>
        <div class="desc-text">
          <div class="bold">Preview is not available.</div>By clicking download,<b class="ml-1">a status dialog</b> will open to start the export process. The process may take<b class="ml-1">a few minutes</b> but once it finishes a file will be
          downloadable from your browser. You may continue to browse the DL while the export process is in progress.
        </div>
        <a href="#" title="Download" data-href="/action/searchCitationExport?query=DOI%3D10.1145%252F1322432.1322433%26target%3Dindex-terms" class="btn transparent downloadBtn"><i aria-hidden="true" class="icon-Icon_Download"></i>Download<i aria-hidden="true" class="icon-export"></i></a>
      </div>
    </li>
    <li id="selectedTab" aria-labelledby="selected" role="tabpanel" class="tab__pane active">
      <div class="csl-wrapper copy__text-wrapper">
        <pre class="copy__text csl-response"></pre>
        <div id="export-warning"></div>
        <div class="pull-right">
          <ul role="menu" class="rlist--inline separator">
            <li><a href="javascript:void(0)" role="menuitem" title="Download citation" class="download__btn disabled"><label class="visibility-hidden">Download citation</label><i aria-hidden="true" class="icon-Icon_Download"></i></a></li>
            <li><input type="hidden" id="doisLimitNumber"
                value="1000"><a href="javascript:void(0)" role="menuitem" title="Copy citation" class="copy__btn disabled"><label class="visibility-hidden">Copy citation</label><i aria-hidden="true" class="icon-pages"></i></a></li>
          </ul>
        </div>
      </div>
    </li>
  </ul>
</form>

Text Content

THIS WEBSITE USES COOKIES

We occasionally run membership recruitment campaigns on social media channels
and use cookies to track post-clicks. We also share information about your use
of our site with our social media, advertising and analytics partners who may
combine it with other information that you’ve provided to them or that they’ve
collected from your use of their services. Use the check boxes below to choose
the types of cookies you consent to have stored on your device.


Do not sell or share my personal information
Use necessary cookies only Allow all cookies Show details
OK
Use necessary cookies only Allow selected cookies Allow all cookies
Necessary
Preferences
Statistics
Marketing
Show details
Cookie declaration [#IABV2SETTINGS#] About
 Necessary (10)  Preferences (5)  Statistics (16)  Marketing (25)  Unclassified
(0)

Necessary cookies help make a website usable by enabling basic functions like
page navigation and access to secure areas of the website. The website cannot
function properly without these cookies. These cookies do not gather information
about you that could be used for marketing purposes and do not remember where
you have been on the internet.


NameProviderPurposeExpiryType__cf_bm [x2]ACMThis cookie is used to distinguish
between humans and bots. This is beneficial for the website, in order to make
valid reports on the use of their website.1 dayHTTP__jidc.disquscdn.comUsed to
add comments to the website and remember the user's Disqus login credentials
across websites that use said
service.SessionHTTPdisqusauthc.disquscdn.comRegisters whether the user is logged
in. This allows the website owner to make parts of the website inaccessible,
based on the user's log-in status. SessionHTTP_cfuvidACMThis cookie is a part of
the services provided by Cloudflare - Including load-balancing, deliverance of
website content and serving DNS connection for website operators.
SessionHTTPcf_chl_1ACMThis cookie is a part of the services provided by
Cloudflare - Including load-balancing, deliverance of website content and
serving DNS connection for website operators. 1 dayHTTPcf_chl_rc_mACMThis cookie
is a part of the services provided by Cloudflare - Including load-balancing,
deliverance of website content and serving DNS connection for website operators.
1 dayHTTPCookieConsentCookiebotStores the user's cookie consent state for the
current domain1 yearHTTP1.gifCookiebotUsed to count the number of sessions to
the website, necessary for optimizing CMP product delivery.
SessionPixelVISITOR_PRIVACY_METADATAYouTubeStores the user's cookie consent
state for the current domain180 daysHTTP

Preference cookies enable a website to remember information that changes the way
the website behaves or looks, like your preferred language or the region that
you are in.

NameProviderPurposeExpiryTypeaet-dismissc.disquscdn.comNecessary for the
functionality of the website's
comment-system.PersistentHTMLdrafts.queuec.disquscdn.comNecessary for the
functionality of the website's
comment-system.PersistentHTMLsubmitted_posts_cachec.disquscdn.comNecessary for
the functionality of the website's
comment-system.PersistentHTMLmopDeployMopinionPendingSessionHTMLMACHINE_LAST_SEENACMPending300
daysHTTP

Statistic cookies help website owners understand how visitors interact with
websites by collecting and reporting information anonymously.

NameProviderPurposeExpiryType_gaGoogleRegisters a unique ID that is used to
generate statistical data on how the visitor uses the website.2
yearsHTTP_ga_#GoogleUsed by Google Analytics to collect data on the number of
times a user has visited the website as well as dates for the first and most
recent visit. 2 yearsHTTP_gatGoogleUsed by Google Analytics to throttle request
rate1 dayHTTP_gidGoogleRegisters a unique ID that is used to generate
statistical data on how the visitor uses the website.1
dayHTTP_hjSession_#HotjarCollects statistics on the visitor's visits to the
website, such as the number of visits, average time spent on the website and
what pages have been read.1 dayHTTP_hjSessionUser_#HotjarCollects statistics on
the visitor's visits to the website, such as the number of visits, average time
spent on the website and what pages have been read.1
yearHTTP_hjTLDTestHotjarRegisters statistical data on users' behaviour on the
website. Used for internal analytics by the website operator.
SessionHTTP_hp2_#Heap AnalyticsCollects data on the user’s navigation and
behavior on the website. This is used to compile statistical reports and
heatmaps for the website owner.1 dayHTTP_hp2_hld#.#Heap AnalyticsCollects data
on the user’s navigation and behavior on the website. This is used to compile
statistical reports and heatmaps for the website owner.1 dayHTTP_hp2_id.#Heap
AnalyticsCollects data on the user’s navigation and behavior on the website.
This is used to compile statistical reports and heatmaps for the website owner.1
yearHTTP_hp2_ses_props.#Heap AnalyticsCollects data on the user’s navigation and
behavior on the website. This is used to compile statistical reports and
heatmaps for the website owner.1 dayHTTPdisqus_uniquec.disquscdn.comCollects
statistics related to the user's visits to the website, such as number of
visits, average time spent on the website and loaded
pages.SessionHTTPcollectGoogleUsed to send data to Google Analytics about the
visitor's device and behavior. Tracks the visitor across devices and marketing
channels.SessionPixelhjActiveViewportIdsHotjarThis cookie contains an ID string
on the current session. This contains non-personal information on what subpages
the visitor enters – this information is used to optimize the visitor's
experience.PersistentHTMLhjViewportIdHotjarSaves the user's screen size in order
to adjust the size of images on the website.SessionHTMLtdGoogleRegisters
statistical data on users' behaviour on the website. Used for internal analytics
by the website operator. SessionPixel

Marketing cookies are used to track visitors across websites. The intention is
to display ads that are relevant and engaging for the individual user and
thereby more valuable for publishers and third party advertisers.

NameProviderPurposeExpiryTypebadges-messagec.disquscdn.comCollects data on the
visitor’s use of the comment system on the website, and what blogs/articles the
visitor has read. This can be used for marketing purposes.
PersistentHTMLapi/telemetryHeap AnalyticsCollects data on user behaviour and
interaction in order to optimize the website and make advertisement on the
website more relevant. SessionPixelhHeap AnalyticsCollects data on user
behaviour and interaction in order to optimize the website and make
advertisement on the website more relevant.
SessionPixel#-#YouTubePendingSessionHTMLiU5q-!O9@$YouTubeRegisters a unique ID
to keep statistics of what videos from YouTube the user has
seen.SessionHTMLLAST_RESULT_ENTRY_KEYYouTubeUsed to track user’s interaction
with embedded
content.SessionHTTPLogsDatabaseV2:V#||LogsRequestsStoreYouTubePendingPersistentIDBnextIdYouTubeUsed
to track user’s interaction with embedded
content.SessionHTTPPREFYouTubeRegisters a unique ID that is used by Google to
keep statistics of how the visitor uses YouTube videos across different
websites.8 monthsHTTPremote_sidYouTubeNecessary for the implementation and
functionality of YouTube video-content on the website.
SessionHTTPrequestsYouTubeUsed to track user’s interaction with embedded
content.SessionHTTPServiceWorkerLogsDatabase#SWHealthLogYouTubeNecessary for the
implementation and functionality of YouTube video-content on the website.
PersistentIDBTESTCOOKIESENABLEDYouTubeUsed to track user’s interaction with
embedded content.1 dayHTTPVISITOR_INFO1_LIVEYouTubePending180
daysHTTPYSCYouTubePendingSessionHTTPyt.innertube::nextIdYouTubeRegisters a
unique ID to keep statistics of what videos from YouTube the user has
seen.PersistentHTMLytidb::LAST_RESULT_ENTRY_KEYYouTubeUsed to track user’s
interaction with embedded content.PersistentHTMLYtIdbMeta#databasesYouTubeUsed
to track user’s interaction with embedded
content.PersistentIDByt-remote-cast-availableYouTubeStores the user's video
player preferences using embedded YouTube
videoSessionHTMLyt-remote-cast-installedYouTubeStores the user's video player
preferences using embedded YouTube
videoSessionHTMLyt-remote-connected-devicesYouTubeStores the user's video player
preferences using embedded YouTube
videoPersistentHTMLyt-remote-device-idYouTubeStores the user's video player
preferences using embedded YouTube
videoPersistentHTMLyt-remote-fast-check-periodYouTubeStores the user's video
player preferences using embedded YouTube
videoSessionHTMLyt-remote-session-appYouTubeStores the user's video player
preferences using embedded YouTube
videoSessionHTMLyt-remote-session-nameYouTubeStores the user's video player
preferences using embedded YouTube videoSessionHTML

Unclassified cookies are cookies that we are in the process of classifying,
together with the providers of individual cookies.

We do not use cookies of this type.

 [#IABV2_LABEL_PURPOSES#]  [#IABV2_LABEL_FEATURES#]  [#IABV2_LABEL_PARTNERS#]
[#IABV2_BODY_PURPOSES#]
[#IABV2_BODY_FEATURES#]
[#IABV2_BODY_PARTNERS#]

Cookies are small text files that can be used by websites to make a user's
experience more efficient. Other than those strictly necessary for the operation
of the site,  we need your permission to store any type of cookies on your
device. Learn more about ACM, how you can contact us, and how we process
personal data in our Privacy Policy. Also please consult our Cookie Notice.


You can change or withdraw your consent from the Cookie Declaration on our
website at any time by visiting the Cookie Declaration page. If contacting us
regarding your consent, please state your consent ID and date from that page.



Your consent applies to the following domains: dl.acm.org


Cookie declaration last updated on 30.04.24 by Cookiebot
skip to main content
 * Advanced Search
 * Browse
 * About
 *  * Sign in
    * Register

 * Search ACM Digital Library
   SearchSearch
 * Advanced Search
 * Journals
 * Magazines
 * Proceedings
 * Books
 * SIGs
 * Conferences
 * People
 *  * Browse
    * About

 * More
 * 

Search ACM Digital Library

SearchSearch
Advanced Search

ACM Computing Surveys
 * Journal Home
 * Just Accepted
 * Latest Issue
 * 
 * Archive
 * Authors
    * Author Guidelines
    * Calls for Papers
    * Submission Site
    * ACM Author Policies

 * Editors
    * Editorial Board
    * Associate Editor Guidelines
    * Associate Editors Welcome Video

 * Reviewers
    * Reviewer Guidelines

 * About
    * Charter
    * Announcements
    * Abstracting/Indexing
    * CSUR Author List
    * CSUR Affiliations
    * ACM Award Winners

 * Contact Us
 * More





 * Home
 * ACM Journals
 * ACM Computing Surveys
 * Vol. 40, No. 1
 * Survey of graph database models

research-article

Share on
 * 
 * 
 * 
 * 
 * 
   
   


SURVEY OF GRAPH DATABASE MODELS

 * Authors:
 * Renzo Angles
   
   Universidad de Chile, Santiago, Chile
   
   Universidad de Chile, Santiago, Chile
   
   View Profile
   ,
 * Claudio Gutierrez
   
   Universidad de Chile, Santiago, Chile
   
   Universidad de Chile, Santiago, Chile
   
   View Profile

Authors Info & Claims
ACM Computing SurveysVolume 40Issue 1Article No.: 1pp
1–39https://doi.org/10.1145/1322432.1322433
Published:22 February 2008Publication History
 * 633citation
 * 17,463
 * Downloads

Metrics
Total Citations633
Total Downloads17,463
Last 12 Months882
Last 6 weeks107
 * Get Citation Alerts
 * 
 * 
 * Publisher Site

 * 
 * Get Access




ACM COMPUTING SURVEYS

Volume 40, Issue 1
PreviousArticleNextArticle
 * * 
 * * Abstract
   * References
   * Cited By
   * Index Terms
   * Recommendations
   * Comments




ACM COMPUTING SURVEYS

Volume 40, Issue 1
PreviousArticleNextArticle
 * * 
 * * Abstract
   * References
   * Cited By
   * Index Terms
   * Recommendations
   * Comments


 * 
 * 
 * 
 * 136References
 * 
 * 
 * 

Skip Abstract Section


ABSTRACT

Graph database models can be defined as those in which data structures for the
schema and instances are modeled as graphs or generalizations of them, and data
manipulation is expressed by graph-oriented operations and type constructors.
These models took off in the eighties and early nineties alongside
object-oriented models. Their influence gradually died out with the emergence of
other database models, in particular geographical, spatial, semistructured, and
XML. Recently, the need to manage information with graph-like nature has
reestablished the relevance of this area. The main objective of this survey is
to present the work that has been conducted in the area of graph database
modeling, concentrating on data structures, query languages, and integrity
constraints.




REFERENCES

 1.   Abiteboul, S. 1997. Querying semi-structured data. In Proceedings of the
      6th International Conference on Database Theory (ICDT). LNCS, vol. 1186.
      Springer, 1--18. Google ScholarDigital Library
 2.   Abiteboul, S. and Hull, R. 1984. IFO: A formal semantic database model. In
      Proceedings of the 3th Symposium on Principles of Database Systems (PODS).
      ACM Press, 119--132. Google ScholarDigital Library
 3.   Abiteboul, S., Quass, D., McHugh, J., Widom, J., and Wiener, J. L. 1997.
      The Lorel query language for semistructured data. Int. J. Dig. Libr. 1, 1,
      68--88.Google ScholarCross Ref
 4.   Abiteboul, S. and Vianu, V. 1997. Queries and computation on the Web. In
      Proceedings of the 6th International Conference on Database Theory (ICDT).
      LNCS, vol. 1186. Springer, 262--275. Google ScholarDigital Library
 5.   Agrawal, R. and Jagadish, H. V. 1988. Efficient search in very large
      databases. In Proceedings of the 14th International Conference on Very
      Large Data Bases (VLDB). Morgan Kaufmann, 407--418. Google ScholarDigital
      Library
 6.   Agrawal, R. and Jagadish, H. V. 1989. Materialization and incremental
      update of path information. In Proceedings of the 5th International
      Conference on Data Engineering (ICDE). IEEE Computer Society, 374--383.
      Google ScholarDigital Library
 7.   Agrawal, R. and Jagadish, H. V. 1994. Algorithms for searching massive
      graphs. IEEE Trans. Knowl. Data Eng. 6, 2, 225--238. Google ScholarDigital
      Library
 8.   Albert, R. and Barabási, A.-L. 2002. Statistical mechanics of complex
      networks. Rev. Mod. Phy. 74, 47.Google ScholarCross Ref
 9.   Alechina, N., Demri, S., and de Rijke, M. 2003. A modal perspective on
      path constraints. J. Logic Computation 13, 6, 939--956.Google ScholarCross
      Ref
 10.  Amann, B. and Scholl, M. 1992. Gram: A Graph Data Model and Query
      Language. In European Conference on Hypertext Technology (ECHT). ACM,
      201--211. Google ScholarDigital Library
 11.  Andries, M. and Engels, G. 1993. A hybrid query language for an extended
      entity-relationship model. Tech. Rep. TR 93-15, Institute of Advanced
      Computer Science, Universiteit Leiden. May.Google Scholar
 12.  Andries, M., Gemis, M., Paredaens, J., Thyssens, I., and den Bussche, J.
      V. 1992. Concepts for graph-oriented object manipulation. In Proceedings
      of the 3rd International Conference on Extending Database Technology
      (EDBT). LNCS, vol. 580. Springer, 21--38. Google ScholarDigital Library
 13.  Angles, R. and Gutierrez, C. 2005. Querying RDF data from a graph database
      perspective. In Proceedings of the 2nd European Semantic Web Conference
      (ESWC). Number 3532 in LNCS. 346--360. Google ScholarDigital Library
 14.  Aufaure-Portier, M.-A. and Trépied, C. 1976. A survey of query languages
      for geographic information systems. In Proceedings of the 3rd
      International Workshop on Interfaces to Databases. 431--438.Google Scholar
 15.  Azmoodeh, M. and Du, H. 1988. GQL, A graphical query language for semantic
      databases. In Proceedings of the 4th International Conference on
      Scientific and Statistical Database Management (SSDBM). LNCS, vol. 339.
      Springer, 259--277. Google ScholarDigital Library
 16.  Beeri, C. 1988. Data models and languages for databases. In Proceedings of
      the 2nd International Conference on Database Theory (ICDT). LNCS, vol.
      326. Springer, 19--40. Google ScholarDigital Library
 17.  Benkö, G., Flamm, C., and Stadler, P. F. 2003. A graph-based toy model of
      chemistry. J. Chem. Inform. Computer Science (JCISD) 43, 1 (Jan),
      1085--1093.Google Scholar
 18.  Berge, C. 1973. Graphs and Hypergraphs. North-Holland, Amsterdam. Google
      ScholarDigital Library
 19.  Brandes, U. 2005. Network Analysis. Number 3418 in LNCS.
      Springer-Verlag.Google Scholar
 20.  Bray, T., Paoli, J., and Sperberg-McQueen, C. M. 1998. Extensible Markup
      Language (XML) 1.0, W3C Recommendation 10, (February).
      http://www.w3.org/TR/1998/REC-xml-19980210. Google ScholarDigital Library
 21.  Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata,
      R., Tomkins, A., and Wiener, J. 2000. Graph structure in the Web. In
      Proceedings of the 9th International World Wide Web conference on Computer
      Networks: The International Journal of Computer and Telecommunications
      Networking. North-Holland Publishing Co., 309--320. Google ScholarDigital
      Library
 22.  Buneman, P. 1997. Semistructured data. In Proceedings of the 16th
      Symposium on Principles of Database Systems (PODS). ACM Press, 117--121.
      Google ScholarDigital Library
 23.  Buneman, P., Davidson, S., Hillebrand, G., and Suciu, D. 1996. A query
      language and optimization techniques for unstructured data. SIGMOD Record.
      25, 2, 505--516. Google ScholarDigital Library
 24.  Buneman, P., Fan, W., and Weinstein, S. 1998. Path constraints in
      semistructured and structured databases. In Proceedings of the 17th
      Symposium on Principles of Database Systems (PODS). ACM Press, 129-- 138.
      Google ScholarDigital Library
 25.  Cardelli, L., Gardner, P., and Ghelli, G. 2002. A spatial logic for
      querying graphs. In Proceedings of the 29th International Colloquium on
      Automata, Languages, and Programming (ICALP). LNCS. Springer, 597--610.
      Google ScholarDigital Library
 26.  Chandra, A. K. 1988. Theory of database queries. In Proceedings of the 7th
      Symposium on Principles of Database Systems (PODS). ACM Press, 1--9.
      Google ScholarDigital Library
 27.  Chen, P. P.-S. 1976. The entity-relationship model---toward a unified view
      of data. ACM Trans. Database Syst. 1, 1, 9--36. Google ScholarDigital
      Library
 28.  Chomicki, J. 1994. Temporal query languages: a survey. In Proceedings of
      the First International Conference on Temporal Logic (ICTL).
      Springer-Verlag, 506--534. Google ScholarDigital Library
 29.  Codd, E. F. 1970. A relational model of data for large shared data banks.
      Commun. ACM 13, 6, 377-- 387. Google ScholarDigital Library
 30.  Codd, E. F. 1980. Data models in database management. In Proceedings of
      the 1980 Workshop on Data abstraction, Databases, and Conceptual Modeling.
      ACM Press, 112--114. Google ScholarDigital Library
 31.  Codd, E. F. 1983. A relational model of data for large shared data banks.
      Commun. ACM 26, 1, 64--69. Google ScholarDigital Library
 32.  Conklin, J. 1987. Hypertext: An introduction and survey. IEEE Comput. 20,
      9, 17--41. Google ScholarDigital Library
 33.  Consens, M. and Mendelzon, A. 1993. Hy&plus;: A hygraph-based query and
      visualization system. SIGMOD Record 22, 2, 511--516. Google ScholarDigital
      Library
 34.  Consens, M. P. and Mendelzon, A. O. 1989. Expressing structural hypertext
      queries in graphlog. In Proceedings of the 2th Conference on Hypertext.
      ACM Press, 269--292. Google ScholarDigital Library
 35.  Cruz, I. F., Mendelzon, A. O., and Wood, P. T. 1987. A graphical query
      language supporting recursion. In Proceedings of the Association for
      Computing Machinery Special Interest Group on Management of Data. ACM
      Press, 323--330. Google ScholarDigital Library
 36.  Cruz, I. F., Mendelzon, A. O., and Wood, P. T. 1989. G&plus;: recursive
      queries without recursion. In Proceedings of the 2th International
      Conference on Expert Database Systems (EDS). Addison-Wesley, 645--
      666.Google Scholar
 37.  Date, C. J. 1981. Referential integrity. In Proceedings of the 7th
      International Conference on Very Large Data Bases (VLDB). IEEE Computer
      Society, 2--12. Google ScholarDigital Library
 38.  de S. Price, D. J. 1965. Networks of scientific papers. Science 149,
      510--515.Google ScholarCross Ref
 39.  Deng, Y. and Chang, S.-K. 1990. A G-Net model for knowledge representation
      and reasoning. IEEE Trans. Knowl. Data Eng. 2, 3 (Dec), 295--310. Google
      ScholarDigital Library
 40.  Deville, Y., Gilbert, D., van Helden, J., and Wodak, S. J. 2003. An
      overview of data models for the analysis of biochemical pathways. In
      Proceedings of the First International Workshop on Computational Methods
      in Systems Biology. Springer-Verlag, 174. Google ScholarDigital Library
 41.  Dorogovtsev, S. N. and Mendes, J. F. F. 2003. Evolution of Networks---From
      Biological Nets to the Internet and WWW. Oxford University Press. Google
      ScholarDigital Library
 42.  Fernández, M., Florescu, D., Kang, J., Levy, A., and Suciu, D. 1998.
      Catching the boat with strudel: experiences with a Web-site management
      system. In Proceedings of the 1998 ACM SIGMOD International Conference on
      Management of Data. ACM Press, 414--425. Google ScholarDigital Library
 43.  Flesca, S. and Greco, S. 1999. Partially ordered regular languages for
      graph queries. In Proceedings of the 26th International Colloquium on
      Automata, Languages and Programming (ICALP). LNCS, vol. 1644. Springer,
      321--330. Google ScholarDigital Library
 44.  Flesca, S. and Greco, S. 2000. Querying graph databases. In Proceedings of
      the 7th International Conference on Extending Database
      Technology---Advances in Database Technology (EDBT). LNCS, vol. 1777.
      Springer, 510--524. Google ScholarDigital Library
 45.  Florescu, D., Levy, A., and Mendelzon, A. O. 1998. Database techniques for
      the World-Wide Web: A survey. SIGMOD Record 27, 3, 59--74. Google
      ScholarDigital Library
 46.  Fry, J. P. and Sibley, E. H. 1976. Evolution of data-base management
      systems. ACM Comput. Surv. 8, 1. Google ScholarDigital Library
 47.  Furche, T., Linse, B., Bry, F., Plexousakis, D., and Gottlob, G. 2006. RDF
      querying: language constructs and evaluation methods compared. In
      Reasoning Web. Number 4126 in LNCS. 1--52.Google Scholar
 48.  Gemis, M. and Paredaens, J. 1993. An object-oriented pattern matching
      language. In Proceedings of the First JSSST International Symposium on
      Object Technologies for Advanced Software. Springer-Verlag, 339--355.
      Google ScholarDigital Library
 49.  Gemis, M., Paredaens, J., Thyssens, I., and den Bussche, J. V. 1993. GOOD:
      A graph-oriented object database system. In Proceedings of the 1993 ACM
      SIGMOD International Conference on Management of Data. ACM Press,
      505--510. Google ScholarDigital Library
 50.  Giugno, R. and Shasha, D. 2002. GraphGrep: A fast and universal method for
      querying graphs. In Proceedings of the IEEE International Conference in
      Pattern recognition (ICPR).Google Scholar
 51.  Graves, M. Graph data models for genomics. http://www.xweave.com/people/in
      graaves/pubs.Google Scholar
 52.  Graves, M. 1993. Theories and tools for designing application-specific
      knowledge base data models. Ph.D. dissertation, University of Michigan.
      Google ScholarDigital Library
 53.  Graves, M., Bergeman, E. R., and Lawrence, C. B. 1994. Querying a genome
      database using graphs. In Proceedings of the 3th International Conference
      on Bioinformatics and Genome Research.Google Scholar
 54.  Graves, M., Bergeman, E. R., and Lawrence, C. B. 1995a. A graph-theoretic
      data model for genome mapping databases. In Proceedings of the 28th Hawaii
      International Conference on System Sciences (HICSS). IEEE Computer
      Society, 32. Google ScholarDigital Library
 55.  Graves, M., Bergeman, E. R., and Lawrence, C. B. 1995b. Graph database
      systems for genomics. IEEE Eng. Medicine Biol. Special issue on Managing
      Data for the Human Genome Project 11, 6.Google Scholar
 56.  Griffith, R. L. 1982. Three principles of representation for semantic
      networks. ACM Trans. Database Syst. 7, 3, 417--442. Google ScholarDigital
      Library
 57.  Guha, R.V., Lassila, O., Miller, E., and Brickley, D. 1998. Enabling
      inferencing. The Query Languages Workshop (QL).Google Scholar
 58.  Gutiérrez, A., Pucheral, P., Steffen, H., and Thévenin, J.-M. 1994.
      Database graph views: A practical model to manage persistent graphs. In
      Proceedings of the 20th International Conference on Very Large Data Bases
      (VLDB). Morgan Kaufmann, 391--402. Google ScholarDigital Library
 59.  Güting, R. H. 1994. GraphDB: modeling and querying graphs in databases. In
      Proceedings of the 20th International Conference on Very Large Data Bases
      (VLDB). Morgan Kaufmann, 297--308. Google ScholarDigital Library
 60.  Gyssens, M., Paredaens, J., den Bussche, J. V., and Gucht, D. V. 1990a. A
      graph-oriented object database model. In Proceedings of the 9th Symposium
      on Principles of Database Systems (PODS). ACM Press, 417--424. Google
      ScholarDigital Library
 61.  Gyssens, M., Paredaens, J., den Bussche, J. V., and Gucht, D. V. 1991. A
      graph-oriented object database model. Tech. Rep. 91-27, University of
      Antwerp (UIA), Belgium. (March).Google Scholar
 62.  Gyssens, M., Paredaens, J., and Gucht, D. V. 1990b. A graph-oriented
      object model for database end-user interfaces. In Proceedings of the 1990
      ACM SIGMOD International Conference on Management of Data. ACM Press,
      24--33. Google ScholarDigital Library
 63.  Hammer, J. and Schneider, M. 2004. The GenAlg project: developing a new
      integrating data model, language, and tool for managing and querying
      genomic information. SIGMOD Record 33, 2, 45--50. Google ScholarDigital
      Library
 64.  Hammer, M. and McLeod, D. 1978. The semantic data model: a modelling
      mechanism for data base applications. In Proceedings of the 1978 ACM
      SIGMOD International Conference on Management of Data. ACM, 26--36. Google
      ScholarDigital Library
 65.  Hanneman, R. A. 2001. Introduction to social network methods. Tech. Rep.,
      Department of Sociology, University of California, Riverside.Google
      Scholar
 66.  Hayes, J. and Gutierrez, C. 2004. Bipartite graphs as intermediate model
      for RDF. In Proceedings of the 3th International Semantic Web Conference
      (ISWC). Number 3298 in LNCS. Springer-Verlag, 47--61.Google Scholar
 67.  Heuer, A. and Scholl, M. H. 1991. Principles of object-oriented query
      languages. In Datenbanksysteme in Büro, Technik und Wissenschaft (BTW).
      Informatik-Fachberichte, vol. 270. Springer, 178--197.Google Scholar
 68.  Hidders, J. 2001. A graph-based update language for object-oriented data
      models. Ph.D. dissertation, Technische Universiteit Eindhoven.Google
      Scholar
 69.  Hidders, J. 2002. Typing graph-manipulation operations. In Proceedings of
      the 9th International Conference on Database Theory (ICDT).
      Springer-Verlag, 394--409. Google ScholarDigital Library
 70.  Hidders, J. and Paredaens, J. 1993. GOAL, A graph-based object and
      association language. Advances in Database Systems: Implementations and
      Applications, CISM, 247--265.Google Scholar
 71.  Hull, R. and King, R. 1987. Semantic database modeling: Survey,
      applications, and research issues. ACM Comput. Surv. 19, 3, 201--260.
      Google ScholarDigital Library
 72.  ISO. 1999. International Standard ISO/IEC 13250 Topic Maps.Google Scholar
 73.  Jagadish, H. V. and Olken, F. 2003. Data management for the biosciences:
      report of the NLM Workshop on Data Management for Molecular and Cell
      Biology. Tech. Rep. LBNL-52767, National Library of Medicine.Google
      Scholar
 74.  Kerschberg, L., Klug, A. C., and Tsichritzis, D. 1976. A taxonomy of data
      models. In Proceedings of Systems for Large Data Bases (VLDB). North
      Holland and IFIP, 43--64. Google ScholarDigital Library
 75.  Kiesel, N., Schurr, A., and Westfechtel, B. 1996. GRAS: A graph-oriented
      software engineering database system. In IPSEN Book. 397--425. Google
      ScholarDigital Library
 76.  Kifer, M., Kim, W., and Sagiv, Y. 1992. Querying object-oriented
      databases. In Proceedings of the 1992 ACM SIGMOD International Conference
      on Management of Data. ACM Press, 393--402. Google ScholarDigital Library
 77.  Kim, W. 1990. Object-oriented databases: definition and research
      directions. IEEE Trans. Knowl. Data Eng. 2, 3, 327--341. Google
      ScholarDigital Library
 78.  Klyne, G. and Carroll, J. 2004. Resource description framework (RDF)
      concepts and abstract syntax.
      http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.Google Scholar
 79.  Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., and
      Upfal, E. 2000. The Web as a graph. In Proceedings of the 19th Symposium
      on Principles of Database Systems (PODS). ACM Press, 1--10. Google
      ScholarDigital Library
 80.  Kunii, H. S. 1987. DBMS with graph data model for knowledge handling. In
      Proceedings of the 1987 Fall Joint Computer Conference on Exploring
      technology: Today and Tomorrow. IEEE Computer Society Press, 138--142.
      Google ScholarDigital Library
 81.  Kuper, G. M. and Vardi, M. Y. 1984. A new approach to database logic. In
      Proceedings of the 3th Symposium on Principles of Database Systems (PODS).
      ACM Press, 86--96. Google ScholarDigital Library
 82.  Kuper, G. M. and Vardi, M. Y. 1993. The Logical Data Model. ACM Trans.
      Database Syst. 18, 3, 379-- 413. Google ScholarDigital Library
 83.  Langou, B. and Mainguenaud, M. 1994. Graph data model operations for
      network facilities in a geographical information system. In Proceedings of
      the 6th International Symposium on Spatial Data Handling. Vol. 2.
      1002--1019.Google Scholar
 84.  Lécluse, C., Richard, P., and Vélez, F. 1988. O2, an object-oriented data
      model. In Proceedings of the ACM SIGMOD International Conference on
      Management of Data. ACM Press, 424--433. Google ScholarDigital Library
 85.  Levene, M. and Loizou, G. 1995. A graph-based data model and its
      ramifications. IEEE Trans. Knowl. Data Eng. 7, 5, 809--823. Google
      ScholarDigital Library
 86.  Levene, M. and Poulovassilis, A. 1990. The Hypernode model and its
      associated query language. In Proceedings of the 5th Jerusalem Conference
      on Information technology. IEEE Computer Society Press, 520--530. Google
      ScholarDigital Library
 87.  Levene, M. and Poulovassilis, A. 1991. An object-oriented data model
      formalised through hypergraphs. Data Knowl. Eng. 6, 3, 205--224. Google
      ScholarDigital Library
 88.  Mainguenaud, M. 1992. Simatic XT: A data model to deal with multi-scaled
      networks. Comput. Environ. Urban Syst. 16, 281--288.Google ScholarCross
      Ref
 89.  Mainguenaud, M. 1995. Modelling the network component of geographical
      information systems. Int. J. Geog. Inform. Syst. 9, 6, 575--593.Google
      ScholarCross Ref
 90.  Mannino, M. V. and Shapiro, L. D. 1990. Extensions to query languages for
      graph traversal problems. IEEE Trans. Knowl. Data Eng. 2, 3, 353--363.
      Google ScholarDigital Library
 91.  McGee, W. C. 1976. On user criteria for data model evaluation. ACM Trans.
      Database Syst. 1, 4, 370--387. Google ScholarDigital Library
 92.  McGuinness, D. L. and van Harmelen, F. 2004. OWL Web ontology language
      overview, W3C recommendation 10 (February).
      http://www.w3.org/TR/2004/REC-owl-features-20040210/.Google Scholar
 93.  Medeiros, C. B. and Pires, F. 1994. Databases for GIS. SIGMOD Record 23, 1
      (March), 107--115. Google ScholarDigital Library
 94.  Mendelzon, A. O. and Wood, P. T. 1989. Finding regular simple paths in
      graph databases. In Proceedings of the 15th International Conference on
      Very Large Data Bases (VLDB). Morgan Kaufmann Publishers Inc., 185--193.
      Google ScholarDigital Library
 95.  Navathe, S. B. 1992. Evolution of data modeling for databases.
      Communications of the ACM 35, 9, 112--123. Google ScholarDigital Library
 96.  Nejdl, W., Siberski, W., and Sintek, M. 2003. Design issues and challenges
      for RDF- and schema-based peer-to-peer systems. SIGMOD Record 32, 3,
      41--46. Google ScholarDigital Library
 97.  Newman, M. E. J. 2003. The structure and function of complex networks.
      SIAM Rev. 45, 2, 167--256.Google ScholarDigital Library
 98.  Olken, F. 2003. Tutorial on graph data management for biology. IEEE
      Computer Society Bioinformatics Conference (CSB).Google Scholar
 99.  Papakonstantinou, Y., Garcia-Molina, H., and Widom, J. 1995. Object
      exchange across heterogeneous information sources. In Proceedings of the
      11th International Conference on Data Engineering (ICDE). IEEE Computer
      Society, 251--260. Google ScholarDigital Library
 100. Paredaens, J. and Kuijpers, B. 1998. Data models and query languages for
      spatial databases. Data & Knowledge Engineering (DKE) 25, 1--2, 29--53.
      Google ScholarDigital Library
 101. Paredaens, J., Peelman, P., and Tanca, L. 1995. G-Log: A graph-based query
      language. IEEE Trans. Knowl. Data Eng. 7, 3, 436--453. Google
      ScholarDigital Library
 102. Peckham, J. and Maryanski, F. J. 1988. Semantic data models. ACM Comput.
      Surv. 20, 3, 153--189. Google ScholarDigital Library
 103. Pepper, S. and Moore, G. 2001. XML topic maps (XTM) 1.0---TopicMaps.Org
      Specification. http://www.topicmaps.org/xtm/1.0/xtm1-20010806.html.Google
      Scholar
 104. Poulovassilis, A. and Hild, S. G. 2001. Hyperlog: A graph-based system for
      database browsing, querying, and update. IEEE Trans. Knowl. Data Eng. 13,
      2, 316--333. Google ScholarDigital Library
 105. Poulovassilis, A. and Levene, M. 1994. A nested-graph model for the
      representation and manipulation of complex objects. ACM Trans. Inform.
      Syst. 12, 1, 35--68. Google ScholarDigital Library
 106. Prud'hommeaux, E. and Seaborne, A. 2005. SPARQL Query Language for RDF,
      W3C Working Draft 21 July.
      http://www.w3.org/TR/2005/WD-rdf-sparql-query-20050721/.Google Scholar
 107. Ramakrishnan, R. and Ullman, J. D. 1993. A survey of research on deductive
      database systems. J. Logic Prog. 23, 2, 125--149.Google ScholarCross Ref
 108. Roussopoulos, N. and Mylopoulos, J. 1975. Using semantic networks for
      database management. In Proceedings of the International Conference on
      Very Large Data Bases (VLDB). ACM, 144--172. Google ScholarDigital Library
 109. Samet, H. and Aref, W. G. 1995. Spatial data models and query processing.
      In Modern Database Systems. 338--360. Google ScholarDigital Library
 110. Schewe, K.-D., Thalheim, B., Schmidt, J. W., and Wetzel, I. 1993.
      Integrity enforcement in object-oriented databases. In Proceedings of the
      4th International Workshop on Foundations of Models and Languages for Data
      and Objects. Google ScholarDigital Library
 111. Shasha, D., Wang, J. T. L., and Giugno, R. 2002. Algorithmics and
      applications of tree and graph searching. In Proceedings of the 21th
      Symposium on Principles of Database Systems (PODS). ACM Press, 39-- 52.
      Google ScholarDigital Library
 112. Shekhar, S., Coyle, M., Goyal, B., Liu, D.-R., and Sarkar, S. 1997. Data
      models in geographic information systems. Commun. ACM 40, 4, 103--111.
      Google ScholarDigital Library
 113. Sheng, L., Ozsoyoglu, Z. M., and Ozsoyoglu, G. 1999. A graph query
      language and its query processing. In Proceedings of the 15th
      International Conference on Data Engineering (ICDE). IEEE Computer
      Society, 572--581. Google ScholarDigital Library
 114. Sheth, A., Aleman-Meza, B., Arpinar, I. B., Halaschek-Wiener, C.,
      Ramakrishnan, C., Bertram, C., Warke, Y., Avant, D., Arpinar, F. S.,
      Anyanwu, K., and Kochut, K. 2005. Semantic association identification and
      knowledge discovery for national security applications. J. Database Manag.
      16, 1 (Jan-March), 33--53.Google ScholarCross Ref
 115. Shipman, D. W. 1981. The functional data model and the data language
      DAPLEX. ACM Trans. Database Syst. 6, 1, 140--173. Google ScholarDigital
      Library
 116. Silberschatz, A., Korth, H. F., and Sudarshan, S. 1996. Data models. ACM
      Comput. Surv. 28, 1, 105--108. Google ScholarDigital Library
 117. Sowa, J. F. 1976. Conceptual graphs for a database interface. IBM J. Res.
      Devel. 20, 4, 336--357.Google ScholarDigital Library
 118. Sowa, J. F. 1984. Conceptual Structures: Information Processing in Mind
      and Machine. Reading, MA, Addison-Wesley. Google ScholarDigital Library
 119. Sowa, J. F. 1991. Principles of Semantic Networks: Explorations in the
      Representation of Knowledge. Morgan Kaufmann Publishers.Google Scholar
 120. Stein, L. D. and Tierry-Mieg, J. 1999. AceDB: A genome database management
      system. Comput. Sci. Eng. 1, 3, 44--52.Google ScholarDigital Library
 121. Tansel, A., Clifford, J., Gadia, S., Jajodia, S., Segev, A., and
      Snodgrass, R. T., Eds. 1993. Temporal Databases: Theory, Design, and
      Implementation. Benjamin-Cummings. Google ScholarDigital Library
 122. Taylor, R. W. and Frank, R. L. 1976. CODASYL data-base management systems.
      ACM Comput. Surv. 8, 1, 67--103. Google ScholarDigital Library
 123. Thalheim, B. 1991. Dependencies in Relational Databases. Leipzig, Teubner
      Verlag.Google Scholar
 124. Thalheim, B. 1996. An overview on semantical constraints for database
      models. In Proceedings of the 6th International Conference Intellectual
      Systems and Computer Science.Google Scholar
 125. Tompa, F. W. 1989. A data model for flexible hypertext database systems.
      ACM Trans. Inform. Syst. 7, 1, 85--100. Google ScholarDigital Library
 126. Tsichritzis, D. C. and Lochovsky, F. H. 1976. Hierarchical data-base
      management: A survey. ACM Comput. Surv. 8, 1, 105--123. Google
      ScholarDigital Library
 127. Tsvetovat, M., Diesner, J., and Carley, K. 2004. NetIntel: A database for
      manipulation of rich social network data. Tech. Rep. CMU-ISRI-04-135,
      Carnegie Mellon University, School of Computer Science, Institute for
      Software Research International.Google Scholar
 128. Tuv, E., Poulovassilis, A., and Levene, M. 1992. A storage manager for the
      hypernode model. In Proceedings of the 10th British National Conference on
      Databases. Number 618 in LNCS. Springer-Verlag, 59--77. Google
      ScholarDigital Library
 129. Vardi, M. Y. 1982. The complexity of relational query languages (extended
      abstract). In Proceedings of the 14th ACM Symposium on Theory of Computing
      (STOC). ACM Press, 137--146. Google ScholarDigital Library
 130. Vassiliadis, P. and Sellis, T. 1999. A survey of logical models for OLAP
      Databases. SIGMOD Record 28, 4, 64--69. Google ScholarDigital Library
 131. Vianu, V. 2003. A Web odyssey: From Codd to XML. SIGMOD Record 32, 2,
      68--77. Google ScholarDigital Library
 132. Watters, C. and Shepherd, M. A. 1990. A transient hypergraph-based model
      for data access. ACM Trans. Inform. Syst. 8, 2, 77--102. Google
      ScholarDigital Library
 133. Weddell, G. E. 1992. Reasoning about functional dependencies generalized
      for semantic data models. ACM Trans. Database Syst. 17, 1, 32--64. Google
      ScholarDigital Library
 134. Wellman, B., Salaff, J., Dimitrova, D., Garton, L., Gulia, M., and
      Haythornthwaite, C. 1996. Computer networks as social networks:
      collaborative work,telework, and virtual community. Ann. Rev. Sociol. 22,
      213--238.Google ScholarCross Ref
 135. Yannakakis, M. 1990. Graph-theoretic methods in database theory. In
      Proceedings of the 9th Symposium on Principles of Database Systems (PODS).
      ACM Press, 230--242. Google ScholarDigital Library
 136. Zicari, R. 1991. A framework for schema updates in an object-oriented
      database system. In Proceedings of the 7th International Conference on
      Data Engineering (ICDE). IEEE Computer Society, 2--13. Google
      ScholarDigital Library

Show All References


CITED BY

View all

 1.   Wang B, Li M, Peng Z and Lu W. (2024). Hierarchical attributed graph-based
      generative façade parsing for high-rise residential buildings. Automation
      in Construction. 10.1016/j.autcon.2024.105471. 164. (105471). Online
      publication date: 1-Aug-2024.
      
      https://linkinghub.elsevier.com/retrieve/pii/S0926580524002073

 2.   Remadi A, El Hage K, Hobeika Y and Bugiotti F. (2024). To prompt or not to
      prompt: Navigating the use of Large Language Models for integrating and
      modeling heterogeneous data. Data & Knowledge Engineering.
      10.1016/j.datak.2024.102313. 152. (102313). Online publication date:
      1-Jul-2024.
      
      https://linkinghub.elsevier.com/retrieve/pii/S0169023X24000375

 3.   Buosi S, Timilsina M, Torrente M, Provencio M, Fey D and Nováček V.
      (2024). Boosting predictive models and augmenting patient data with
      relevant genomic and pathway information. Computers in Biology and
      Medicine. 10.1016/j.compbiomed.2024.108398. 174. (108398). Online
      publication date: 1-May-2024.
      
      https://linkinghub.elsevier.com/retrieve/pii/S0010482524004827

 4.   Sacilotto R, Mathur S and Gonsalves R. Connecting Asset Stores with Graph
      Databases. SMPTE Motion Imaging Journal. 10.5594/JMI.2024/XBZC2345. 133:2.
      (28-36).
      
      https://ieeexplore.ieee.org/document/10500341/

 5.   Currim S, Snodgrass R and Suh Y. (2024). Identifying the Root Causes of
      DBMS Suboptimality. ACM Transactions on Database Systems. 49:1. (1-40).
      Online publication date: 31-Mar-2024.
      
      https://doi.org/10.1145/3636425

 6.   Castro-Ospina A, Solarte-Sanchez M, Vega-Escobar L, Isaza C and
      Martínez-Vargas J. (2024). Graph-Based Audio Classification Using
      Pre-Trained Models and Graph Neural Networks. Sensors. 10.3390/s24072106.
      24:7. (2106).
      
      https://www.mdpi.com/1424-8220/24/7/2106

 7.   Arroyuelo D, Bustos B, Gómez-Brandón A, Hogan A, Navarro G and Reutter J.
      (2024). Worst-Case-Optimal Similarity Joins on Graph Databases.
      Proceedings of the ACM on Management of Data. 2:1. (1-26). Online
      publication date: 12-Mar-2024.
      
      https://doi.org/10.1145/3639294

 8.   Guo Q, Zhang C, Zhang S and Lu J. (2024). Multi-model query languages:
      taming the variety of big data. Distributed and Parallel Databases. 42:1.
      (31-71). Online publication date: 1-Mar-2024.
      
      https://doi.org/10.1007/s10619-023-07433-1

 9.   Besta M, Gerstenberger R, Peter E, Fischer M, Podstawski M, Barthels C,
      Alonso G and Hoefler T. (2023). Demystifying Graph Databases: Analysis and
      Taxonomy of Data Organization, System Designs, and Graph Queries. ACM
      Computing Surveys. 56:2. (1-40). Online publication date: 29-Feb-2024.
      
      https://doi.org/10.1145/3604932

 10.  Deforche M, De Vos I, Bronselaer A and De Tré G. (2024). A Hierarchical
      Orthographic Similarity Measure for Interconnected Texts Represented by
      Graphs. Applied Sciences. 10.3390/app14041529. 14:4. (1529).
      
      https://www.mdpi.com/2076-3417/14/4/1529

 11.  Jiang Y, Liu J, Ba J, Yap R, Liang Z and Rigger M. Detecting Logic Bugs in
      Graph Database Management Systems via Injective and Surjective Graph Query
      Transformation. Proceedings of the 46th IEEE/ACM International Conference
      on Software Engineering. (1-12).
      
      https://doi.org/10.1145/3597503.3623307

 12.  Mondal R, Ignatova E, Walke D, Broneske D, Saake G and Heyer R. (2024).
      Clustering graph data: the roadmap to spectral techniques. Discover
      Artificial Intelligence. 10.1007/s44163-024-00102-x. 4:1.
      
      https://link.springer.com/10.1007/s44163-024-00102-x

 13.  García R and Angles R. Path Querying in Graph Databases: A Systematic
      Mapping Study. IEEE Access. 10.1109/ACCESS.2024.3371976. 12.
      (33154-33172).
      
      https://ieeexplore.ieee.org/document/10456906/

 14.  Ayats H, Cellier P and Ferré S. (2024). Concepts of neighbors and their
      application to instance-based learning on relational data. International
      Journal of Approximate Reasoning. 10.1016/j.ijar.2023.109059. 164.
      (109059). Online publication date: 1-Jan-2024.
      
      https://linkinghub.elsevier.com/retrieve/pii/S0888613X23001901

 15.  Buosi S, Timilsina M, Janik A, Costabello L, Torrente M, Provencio M, Fey
      D and Nováček V. (2024). Machine learning estimated probability of relapse
      in early-stage non-small-cell lung cancer patients with aneuploidy
      imputation scores and knowledge graph embeddings. Expert Systems with
      Applications: An International Journal. 235:C. Online publication date:
      1-Jan-2024.
      
      https://doi.org/10.1016/j.eswa.2023.121127

 16.  Bhattacharyya A and Chakravarty D. (2024). Graph Database: Re-engineering
      Methodologies Relational to NOSQL Databases. Intelligent Strategies for
      ICT. 10.1007/978-981-97-1260-1_12. (131-146).
      
      https://link.springer.com/10.1007/978-981-97-1260-1_12

 17.  Swevels A, Fahland D and Montali M. (2024). Implementing Object-Centric
      Event Data Models in Event Knowledge Graphs. Process Mining Workshops.
      10.1007/978-3-031-56107-8_33. (431-443).
      
      https://link.springer.com/10.1007/978-3-031-56107-8_33

 18.  Feng W, Chen S, Liu H and Ji Y. PeeK: A Prune-Centric Approach for K
      Shortest Path Computation. Proceedings of the International Conference for
      High Performance Computing, Networking, Storage and Analysis. (1-14).
      
      https://doi.org/10.1145/3581784.3607110

 19.  Besta M, Gerstenberger R, Fischer M, Podstawski M, Blach N, Egeli B,
      Mitenkov G, Chlapek W, Michalewicz M, Niewiadomski H, Mueller J and
      Hoefler T. The Graph Database Interface: Scaling Online Transactional and
      Analytical Graph Workloads to Hundreds of Thousands of Cores. Proceedings
      of the International Conference for High Performance Computing,
      Networking, Storage and Analysis. (1-18).
      
      https://doi.org/10.1145/3581784.3607068

 20.  Berkholz C and Nordström J. (2023). Near-optimal Lower Bounds on
      Quantifier Depth and Weisfeiler–Leman Refinement Steps. Journal of the
      ACM. 70:5. (1-32). Online publication date: 31-Oct-2023.
      
      https://doi.org/10.1145/3195257

 21.  Das U, Hood C and Nagpure V. (2023). A Reasoning System Architecture for
      Spectrum Decision Making 2023 International Symposium on Networks,
      Computers and Communications (ISNCC). 10.1109/ISNCC58260.2023.10323992.
      979-8-3503-3559-0. (1-10).
      
      https://ieeexplore.ieee.org/document/10323992/

 22.  Equi M, Mäkinen V and Tomescu A. (2023). Graphs cannot be indexed in
      polynomial time for sub-quadratic time string matching, unless SETH fails.
      Theoretical Computer Science. 975:C. Online publication date: 9-Oct-2023.
      
      https://doi.org/10.1016/j.tcs.2023.114128

 23.  Yuan Y, Soh D, Guo K, Xiong Z and Quek T. (2023). Joint Network Topology
      Inference via Structural Fusion Regularization. IEEE Transactions on
      Knowledge and Data Engineering. 35:10. (10351-10364). Online publication
      date: 1-Oct-2023.
      
      https://doi.org/10.1109/TKDE.2023.3264971

 24.  Chen X and Atlee J. (2023). Variability-aware Neo4j for Analyzing a
      Graphical Model of a Software Product Line 2023 ACM/IEEE 26th
      International Conference on Model Driven Engineering Languages and Systems
      (MODELS). 10.1109/MODELS58315.2023.00034. 979-8-3503-2480-8. (307-318).
      
      https://ieeexplore.ieee.org/document/10343738/

 25.  Fernau H and Gajjar K. (2023). The Space Complexity of Sum Labelling.
      Theory of Computing Systems. 67:5. (1026-1049). Online publication date:
      1-Oct-2023.
      
      https://doi.org/10.1007/s00224-023-10130-2

 26.  Areces C, Cassano V, Dutto D and Fervari R. Data Graphs with Incomplete
      Information (and a Way to Complete Them). Logics in Artificial
      Intelligence. (729-744).
      
      https://doi.org/10.1007/978-3-031-43619-2_49

 27.  Syafiq M, Azri S and Ujang U. (2023). Modelling Reoccurrence of Events in
      an Event-Based Graph Database for Asset Management 2023 4th International
      Conference on Artificial Intelligence and Data Sciences (AiDAS).
      10.1109/AiDAS60501.2023.10284664. 979-8-3503-1843-2. (102-108).
      
      https://ieeexplore.ieee.org/document/10284664/

 28.  Deforche M, De Vos I, Bronselaer A and De Tré G. An Orthographic
      Similarity Measure for Graph-Based Text Representations. Flexible Query
      Answering Systems. (206-218).
      
      https://doi.org/10.1007/978-3-031-42935-4_17

 29.  Thys G. Developing and implementing a superconnector of producers in the
      printing industry to facilitate book historical research. Proceedings of
      the 34th ACM Conference on Hypertext and Social Media. (1-6).
      
      https://doi.org/10.1145/3603163.3609061

 30.  Cotumaccio N, D’Agostino G, Policriti A and Prezza N. (2023).
      Co-lexicographically Ordering Automata and Regular Languages - Part I.
      Journal of the ACM. 70:4. (1-73). Online publication date: 31-Aug-2023.
      
      https://doi.org/10.1145/3607471

 31.  Diaz-Ordoñez M, Rodríguez Baena D and Yun-Casalilla B. (2023). A new
      approach for the construction of historical databases—NoSQL
      Document-oriented databases: the example of AtlantoCracies . Digital
      Scholarship in the Humanities. 10.1093/llc/fqad033. 38:3. (1014-1032).
      Online publication date: 31-Aug-2023.
      
      https://academic.oup.com/dsh/article/38/3/1014/7136726

 32.  Vrgoč D, Rojas C, Angles R, Arenas M, Arroyuelo D, Buil-Aranda C, Hogan A,
      Navarro G, Riveros C and Romero J. (2023). MillenniumDB: An Open-Source
      Graph Database System. Data Intelligence. 10.1162/dint_a_00229. 5:3.
      (560-610). Online publication date: 1-Aug-2023.
      
      https://direct.mit.edu/dint/article/5/3/560/117375/MillenniumDB-An-Open-Source-Graph-Database-System

 33.  Park S and Cheng T. (2023). Framework for constructing multimodal
      transport networks and routing using a graph database: A case study in
      London. Transactions in GIS. 10.1111/tgis.13071. 27:5. (1391-1417). Online
      publication date: 1-Aug-2023.
      
      https://onlinelibrary.wiley.com/doi/10.1111/tgis.13071

 34.  Niknam G, Molaei S, Zare H, Pan S, Jalili M, Zhu T and Clifton D. (2023).
      DyVGRNN. Neural Networks. 165:C. (596-610). Online publication date:
      1-Aug-2023.
      
      https://doi.org/10.1016/j.neunet.2023.05.048

 35.  Equi M, Mäkinen V, Tomescu A and Grossi R. (2023). On the Complexity of
      String Matching for Graphs. ACM Transactions on Algorithms. 19:3. (1-25).
      Online publication date: 31-Jul-2023.
      
      https://doi.org/10.1145/3588334

 36.  Sunuwar D and Singh M. (2023). Comparative Analysis of Relational and
      Graph Databases for Data Provenance: Performance, Queries, and Security
      Considerations 2023 World Conference on Communication & Computing (WCONF).
      10.1109/WCONF58270.2023.10235151. 979-8-3503-1120-4. (1-7).
      
      https://ieeexplore.ieee.org/document/10235151/

 37.  Walke D, Micheel D, Schallert K, Muth T, Broneske D, Saake G and Heyer R.
      (2023). The importance of graph databases and graph learning for clinical
      applications. Database. 10.1093/database/baad045. 2023. Online publication
      date: 10-Jul-2023.
      
      https://academic.oup.com/database/article/doi/10.1093/database/baad045/7222237

 38.  Hernandez-Bocanegra D and Ziegler J. (2023). Explaining Recommendations
      through Conversations: Dialog Model and the Effects of Interface Type and
      Degree of Interactivity. ACM Transactions on Interactive Intelligent
      Systems. 13:2. (1-47). Online publication date: 30-Jun-2023.
      
      https://doi.org/10.1145/3579541

 39.  Van Houdt B. (2023). On the Cost of Near-Perfect Wear Leveling in
      Flash-Based SSDs. ACM Transactions on Modeling and Performance Evaluation
      of Computing Systems. 8:1-2. (1-22). Online publication date: 30-Jun-2023.
      
      https://doi.org/10.1145/3576855

 40.  Boneva I, Groz B, Hidders J, Murlak F and Staworko S. Static Analysis of
      Graph Database Transformations. Proceedings of the 42nd ACM
      SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems.
      (251-261).
      
      https://doi.org/10.1145/3584372.3588654

 41.  Wang G, Yu J, Nguyen M, Zhang Y, Yongchareon S and Han Y. (2023).
      Motif-based graph attentional neural network for web service
      recommendation. Knowledge-Based Systems. 269:C. Online publication date:
      7-Jun-2023.
      
      https://doi.org/10.1016/j.knosys.2023.110512

 42.  Chen X, Wang B, Jin Z, Feng Y, Li X, Feng X and Liu Q. (2023). Tabby:
      Automated Gadget Chain Detection for Java Deserialization Vulnerabilities
      2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems
      and Networks (DSN). 10.1109/DSN58367.2023.00028. 979-8-3503-4793-7.
      (179-192).
      
      https://ieeexplore.ieee.org/document/10202660/

 43.  Olawoyin A, Leung C and Cuzzocrea A. (2023). Evolution of Big Data Models
      from Hierarchical Models to Knowledge Graphs 2023 IEEE 47th Annual
      Computers, Software, and Applications Conference (COMPSAC).
      10.1109/COMPSAC57700.2023.00201. 979-8-3503-2697-0. (1325-1330).
      
      https://ieeexplore.ieee.org/document/10197017/

 44.  Habib S, Khan H, Hamilton-Wright A and Hengartner U. (2023). Revisiting
      the Security of Biometric Authentication Systems Against Statistical
      Attacks. ACM Transactions on Privacy and Security. 26:2. (1-30). Online
      publication date: 31-May-2023.
      
      https://doi.org/10.1145/3571743

 45.  Bhuiyan F and Rahman A. (2023). Log-related Coding Patterns to Conduct
      Postmortems of Attacks in Supervised Learning-based Projects. ACM
      Transactions on Privacy and Security. 26:2. (1-24). Online publication
      date: 31-May-2023.
      
      https://doi.org/10.1145/3568020

 46.  Dambra S, Bilge L and Balzarotti D. (2023). A Comparison of Systemic and
      Systematic Risks of Malware Encounters in Consumer and Enterprise
      Environments. ACM Transactions on Privacy and Security. 26:2. (1-30).
      Online publication date: 31-May-2023.
      
      https://doi.org/10.1145/3565362

 47.  Singh D. (2023). Future Field Systems using Graph Database and IoT 2023
      3rd International Conference on Advance Computing and Innovative
      Technologies in Engineering (ICACITE). 10.1109/ICACITE57410.2023.10182586.
      979-8-3503-9926-4. (2183-2186).
      
      https://ieeexplore.ieee.org/document/10182586/

 48.  Bansal A. HGQL: Supporting Schematic Hypergraphs in GraphQL. Proceedings
      of the 27th International Database Engineered Applications Symposium.
      (9-16).
      
      https://doi.org/10.1145/3589462.3589481

 49.  Zhang Y, Liu J, Hou K and Lin Y. (2023). Building a Knowledge Base of
      Bridge Maintenance Using Knowledge Graph. Advances in Civil Engineering.
      10.1155/2023/6047489. 2023. (1-16). Online publication date: 12-Apr-2023.
      
      https://www.hindawi.com/journals/ace/2023/6047489/

 50.  Di Pierro D, Ferilli S and Redavid D. (2023). LPG-Based Knowledge Graphs:
      A Survey, a Proposal and Current Trends. Information.
      10.3390/info14030154. 14:3. (154).
      
      https://www.mdpi.com/2078-2489/14/3/154

 51.  Aldwairi M, Jarrah M, Mahasneh N and Al-khateeb B. (2023). Graph-based
      data management system for efficient information storage, retrieval and
      processing. Information Processing & Management.
      10.1016/j.ipm.2022.103165. 60:2. (103165). Online publication date:
      1-Mar-2023.
      
      https://linkinghub.elsevier.com/retrieve/pii/S0306457322002667

 52.  Zheng J and Li Y. (2023). Machine learning model of tax arrears prediction
      based on knowledge graph. Electronic Research Archive.
      10.3934/era.2023206. 31:7. (4057-4076).
      
      http://www.aimspress.com/article/doi/10.3934/era.2023206

 53.  Hood C, Nagpure V and Zdunek K. (2023). A Knowledge Graph Approach to
      Spectrum Explainability. SSRN Electronic Journal. 10.2139/ssrn.4528668.
      
      https://www.ssrn.com/abstract=4528668

 54.  Peng Z, Luo M, Huang W, Li J, Zheng Q, Sun F and Huang J. Learning
      Representations by Graphical Mutual Information Estimation and
      Maximization. IEEE Transactions on Pattern Analysis and Machine
      Intelligence. 10.1109/TPAMI.2022.3147886. 45:1. (722-737).
      
      https://ieeexplore.ieee.org/document/9699378/

 55.  Aydin A. A Comparative Perspective on Technologies of Big Data Value
      Chain. IEEE Access. 10.1109/ACCESS.2023.3323160. 11. (112133-112146).
      
      https://ieeexplore.ieee.org/document/10281364/

 56.  Kaufmann M and Meier A. (2023). NoSQL-Datenbanksysteme. SQL- &
      NoSQL-Datenbanken. 10.1007/978-3-662-67092-7_7. (251-275).
      
      https://link.springer.com/10.1007/978-3-662-67092-7_7

 57.  Guimarães P, León A and Santos M. (2023). An Automated Patterns-Based
      Model-to-Model Mapping and Transformation System for Labeled Property
      Graphs. Research Challenges in Information Science: Information Science
      and the Connected World. 10.1007/978-3-031-33080-3_11. (171-186).
      
      https://link.springer.com/10.1007/978-3-031-33080-3_11

 58.  Azzi R, Kilany Chamoun R, Serhrouchni A and Sokhn M. (2023). A Healthcare
      Delivery System Powered by Semantic Data Description and Blockchain.
      Advances in Information and Communication. 10.1007/978-3-031-28076-4_19.
      (224-242).
      
      https://link.springer.com/10.1007/978-3-031-28076-4_19

 59.  Kaufmann M and Meier A. (2023). NoSQL Databases. SQL and NoSQL Databases.
      10.1007/978-3-031-27908-9_7. (223-244).
      
      https://link.springer.com/10.1007/978-3-031-27908-9_7

 60.  Schweitzer G, Bitzer M and Vielhaber M. (2023). Lifecycle Engineering in
      the Context of a Medical Device Company – Leveraging MBSE, PLM and AI.
      Product Lifecycle Management. PLM in Transition Times: The Place of Humans
      and Transformative Technologies. 10.1007/978-3-031-25182-5_54. (557-566).
      
      https://link.springer.com/10.1007/978-3-031-25182-5_54

 61.  Mertens N, Wohlfahrt T, Hartmann N and Reddy C. (2023). Automatic
      Transformation of HVAC Diagrams into Machine-Readable Format. Product
      Lifecycle Management. PLM in Transition Times: The Place of Humans and
      Transformative Technologies. 10.1007/978-3-031-25182-5_40. (410-419).
      
      https://link.springer.com/10.1007/978-3-031-25182-5_40

 62.  Nai R, Sulis E, Pasteris P, Giunta M and Meo R. (2023). Exploitation
      and Merge of Information Sources for Public Procurement Improvement.
      Machine Learning and Principles and Practice of Knowledge Discovery in
      Databases. 10.1007/978-3-031-23618-1_6. (89-102).
      
      https://link.springer.com/10.1007/978-3-031-23618-1_6

 63.  Liu S and Kim K. (2023). Ontological Knowledge Graph Framework for 4D
      Printed Product Design: Elongated Homogenous Rod Case. Flexible Automation
      and Intelligent Manufacturing: The Human-Data-Technology Nexus.
      10.1007/978-3-031-17629-6_12. (101-109).
      
      https://link.springer.com/10.1007/978-3-031-17629-6_12

 64.  Ding Y, Xu Z, Zhu Q, Li H, Luo Y, Bao Y, Tang L and Zeng S. (2022).
      Integrated data-model-knowledge representation for natural resource
      entities. International Journal of Digital Earth.
      10.1080/17538947.2022.2047802. 15:1. (653-678). Online publication date:
      31-Dec-2022.
      
      https://www.tandfonline.com/doi/full/10.1080/17538947.2022.2047802

 65.  Schäfer J, Tang M, Luu D, Bergmann A and Wiese L. (2022). Graph4Med: a web
      application and a graph database for visualizing and analyzing medical
      databases. BMC Bioinformatics. 10.1186/s12859-022-05092-0. 23:1.
      
      https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-05092-0

 66.  Kim B, Koo K, Enkhbat U, Kim S, Kim J and Moon B. (2022). M2Bench.
      Proceedings of the VLDB Endowment. 16:4. (747-759). Online publication
      date: 1-Dec-2022.
      
      https://doi.org/10.14778/3574245.3574259

 67.  Nguyen Tien T and Nguyen K. Decision graph for timely delivery of
      multi-AGVs in healthcare environment. Proceedings of the 11th
      International Symposium on Information and Communication Technology.
      (186-192).
      
      https://doi.org/10.1145/3568562.3568652

 68.  Al-Zahrani B, Alshehri S, Cherif A and Imine A. (2022). Property Graph
      Access Control Using View-Based and Query-Rewriting Approaches 2022
      IEEE/ACS 19th International Conference on Computer Systems and
      Applications (AICCSA). 10.1109/AICCSA56895.2022.10017709.
      979-8-3503-1008-5. (1-2).
      
      https://ieeexplore.ieee.org/document/10017709/

 69.  Schuk V, Pombo Jiménez M and Martin U. (2022). Technical specifications to
      meet the requirements of an Automatic Code Compliance Checking tool and
      current developments in infrastructure construction. Results in
      Engineering. 10.1016/j.rineng.2022.100650. 16. (100650). Online
      publication date: 1-Dec-2022.
      
      https://linkinghub.elsevier.com/retrieve/pii/S2590123022003206

 70.  Niknam G, Molaei S, Zare H, Clifton D and Pan S. (2022). Graph
      Representation Learning based on Deep Generative Gaussian Mixture Models.
      Neurocomputing. 10.1016/j.neucom.2022.11.087. Online publication date:
      1-Dec-2022.
      
      https://linkinghub.elsevier.com/retrieve/pii/S0925231222014916

 71.  Rani A, Goyal N and Gadia S. (2022). Social data provenance framework
      based on zero-information loss graph database. Social Network Analysis and
      Mining. 10.1007/s13278-022-00889-6. 12:1. Online publication date:
      1-Dec-2022.
      
      https://link.springer.com/10.1007/s13278-022-00889-6

 72.  Dou H, Mei J, Zhang Y, Chen P and Zheng Z. (2022). JointConf: Jointly
      autotuning configuration parameters for modularized graph databases.
      Journal of Software: Evolution and Process. 10.1002/smr.2495. 34:12.
      Online publication date: 1-Dec-2022.
      
      https://onlinelibrary.wiley.com/doi/10.1002/smr.2495

 73.  Müller C, Bernhard L and Wilhelm D. (2022). Usage of a graph database for
      the selection of sterile items in the OR. International Journal of
      Computer Assisted Radiology and Surgery. 10.1007/s11548-022-02795-w. 18:5.
      (871-875).
      
      https://link.springer.com/10.1007/s11548-022-02795-w

 74.  Saleh D, Kartika Y, Akbar Z, Krisnadhi A and Fatriasari W. On Generating
      SHACL Shapes from Collective Collection of Plant Trait Data. Proceedings
      of the 2022 International Conference on Computer, Control, Informatics and
      Its Applications. (326-330).
      
      https://doi.org/10.1145/3575882.3575945

 75.  Steinmetz D, Merz F, Burmester G, Ma H and Hartmann S. A Modeling Rule
      for Improving the Performance of Graph Models. Conceptual Modeling.
      (336-346).
      
      https://doi.org/10.1007/978-3-031-17995-2_24

 76.  Lygerakis F, Kampelis N and Kolokotsa D. (2022). Knowledge Graphs’
      Ontologies and Applications for Energy Efficiency in Buildings: A Review.
      Energies. 10.3390/en15207520. 15:20. (7520).
      
      https://www.mdpi.com/1996-1073/15/20/7520

 77.  Lumsden I, Luettgau J, Lama V, Scully-Allison C, Brink S, Isaacs K, Pearce
      O and Taufer M. (2022). Enabling Call Path Querying in Hatchet to Identify
      Performance Bottlenecks in Scientific Applications 2022 IEEE 18th
      International Conference on e-Science (e-Science).
      10.1109/eScience55777.2022.00039. 978-1-6654-6124-5. (256-266).
      
      https://ieeexplore.ieee.org/document/9973727/

 78.  Ahmed B and Sami N. Simulation System for Producing Real World Dataset to
      Predict the Covid-19 Contamination Process⋆. Computational Collective
      Intelligence. (272-282).
      
      https://doi.org/10.1007/978-3-031-16014-1_22

 79.  Santra A, Komar K, Bhowmick S and Chakravarthy S. (2022). From base data
      to knowledge discovery – A life cycle approach – Using multilayer
      networks. Data & Knowledge Engineering. 141:C. Online publication date:
      1-Sep-2022.
      
      https://doi.org/10.1016/j.datak.2022.102058

 80.  Bender B, Bertheau C, Körppen T, Lauppe H and Gronau N. (2022). A proposal
      for future data organization in enterprise systems—an analysis of
      established database approaches. Information Systems and e-Business
      Management. 20:3. (441-494). Online publication date: 1-Sep-2022.
      
      https://doi.org/10.1007/s10257-022-00555-6

 81.  Bansal A. Hypergraphs as Conflict-Free Partially Replicated Data Types.
      Database and Expert Systems Applications. (417-432).
      
      https://doi.org/10.1007/978-3-031-12423-5_32

 82.  Altulyan M, Yao L, Wang X, Huang C, Kanhere S and Sheng Q. (2021). A
      Survey on Recommender Systems for Internet of Things: Techniques,
      Applications and Future Directions. The Computer Journal.
      10.1093/comjnl/bxab049. 65:8. (2098-2132). Online publication date:
      11-Aug-2022.
      
      https://academic.oup.com/comjnl/article/65/8/2098/6278157

 83.  Kapsalis P, Kormpakis G, Alexakis K, Karakolis E, Mouzakitis S and
      Askounis D. (2022). A Reasoning Engine Architecture for Building Energy
      Metadata Management 2022 13th International Conference on Information,
      Intelligence, Systems & Applications (IISA).
      10.1109/IISA56318.2022.9904419. 978-1-6654-6390-4. (1-7).
      
      https://ieeexplore.ieee.org/document/9904419/

 84.  Zhang J, Li W, Yuan L, Qin L, Zhang Y and Chang L. (2022). Shortest-path
      queries on complex networks. Proceedings of the VLDB Endowment. 15:11.
      (2640-2652). Online publication date: 1-Jul-2022.
      
      https://doi.org/10.14778/3551793.3551820

 85.  Luo R, Nettasinghe B and Krishnamurthy V. Controlling Segregation in
      Social Network Dynamics as an Edge Formation Game. IEEE Transactions on
      Network Science and Engineering. 10.1109/TNSE.2022.3162789. 9:4.
      (2317-2329).
      
      https://ieeexplore.ieee.org/document/9743602/

 86.  Nahar K and Gill A. (2022). Integrated identity and access management
      metamodel and pattern system for secure enterprise architecture. Data &
      Knowledge Engineering. 140:C. Online publication date: 1-Jul-2022.
      
      https://doi.org/10.1016/j.datak.2022.102038

 87.  Kotiranta P, Junkkari M and Nummenmaa J. (2022). Performance of Graph and
      Relational Databases in Complex Queries. Applied Sciences.
      10.3390/app12136490. 12:13. (6490).
      
      https://www.mdpi.com/2076-3417/12/13/6490

 88.  Parnas Gulnes M, Soylu A and Roman D. (2021). A graph-based approach for
      representing, integrating and analysing neuroscience data: the case of the
      murine basal ganglia. Data Technologies and Applications.
      10.1108/DTA-12-2020-0303. 56:3. (358-381). Online publication date:
      22-Jun-2022.
      
      https://www.emerald.com/insight/content/doi/10.1108/DTA-12-2020-0303/full/html

 89.  Angles R, Hogan A, Lassila O, Rojas C, Schwabe D, Szekely P and Vrgoč D.
      Multilayer graphs. Proceedings of the 5th ACM SIGMOD Joint International
      Workshop on Graph Data Management Experiences & Systems (GRADES) and
      Network Data Analytics (NDA). (1-6).
      
      https://doi.org/10.1145/3534540.3534696

 90.  Figueira D, Jez A and Lin A. Data Path Queries over Embedded Graph
      Databases. Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on
      Principles of Database Systems. (189-201).
      
      https://doi.org/10.1145/3517804.3524159

 91.  Ilyas I, Rekatsinas T, Konda V, Pound J, Qi X and Soliman M. Saga: A
      Platform for Continuous Construction and Serving of Knowledge at Scale.
      Proceedings of the 2022 International Conference on Management of Data.
      (2259-2272).
      
      https://doi.org/10.1145/3514221.3526049

 92.  Andriamampianina L, Ravat F, Song J and Vallès-Parlangeau N. Querying
      Temporal Property Graphs. Advanced Information Systems Engineering.
      (355-370).
      
      https://doi.org/10.1007/978-3-031-07472-1_21

 93.  Reznichenko V. (2022). 60 Years of Databases (part four). PROBLEMS IN
      PROGRAMMING. 10.15407/pp2022.02.057:2. (57-95). Online publication date:
      1-Jun-2022.
      
      http://pp.isofts.kiev.ua/ojs1/article/view/500

 94.  Hogan A, Blomqvist E, Cochez M, D’amato C, Melo G, Gutierrez C, Kirrane S,
      Gayo J, Navigli R, Neumaier S, Ngomo A, Polleres A, Rashid S, Rula A,
      Schmelzeisen L, Sequeda J, Staab S and Zimmermann A. (2021). Knowledge
      Graphs. ACM Computing Surveys. 54:4. (1-37). Online publication date:
      31-May-2022.
      
      https://doi.org/10.1145/3447772

 95.  Khan S, Nguyen P, Abdul-Rahman A, Freeman E, Turkay C and Chen M. Rapid
      Development of a Data Visualization Service in an Emergency Response. IEEE
      Transactions on Services Computing. 10.1109/TSC.2022.3164146. 15:3.
      (1251-1264).
      
      https://ieeexplore.ieee.org/document/9747990/

 96.  Li W, Gao M, Wen D, Zhou H, Ke C and Qin L. (2022). Manipulating
      Structural Graph Clustering 2022 IEEE 38th International Conference on
      Data Engineering (ICDE). 10.1109/ICDE53745.2022.00251. 978-1-6654-0883-7.
      (2749-2761).
      
      https://ieeexplore.ieee.org/document/9835630/

 97.  Schweitzer G, Mörsdorf S, Bitzer M and Vielhaber M. (2022). Detection of
      Cause-Effect Relationships in Life Cycle Sustainability Assessment Based
      on an Engineering Graph. Proceedings of the Design Society.
      10.1017/pds.2022.115. 2. (1129-1138). Online publication date: 1-May-2022.
      
      https://www.cambridge.org/core/product/identifier/S2732527X22001158/type/journal_article

 98.  Kuai H, Tao X and Zhong N. (2022). Web Intelligence meets Brain
      Informatics: Towards the future of artificial intelligence in the
      connected world. World Wide Web. 25:3. (1223-1241). Online publication
      date: 1-May-2022.
      
      https://doi.org/10.1007/s11280-022-01030-5

 99.  Sharma C and Sinha R. (2022). FLASc: a formal algebra for labeled property
      graph schema. Automated Software Engineering. 29:1. Online publication
      date: 1-May-2022.
      
      https://doi.org/10.1007/s10515-022-00336-y

 100. Koegl A, Hubwieser P, Talbot M, Krugel J, Striewe M and Goedicke M.
      (2022). Efficient Structural Analysis of Source Code for Large Scale
      Applications in Education 2022 IEEE Global Engineering Education
      Conference (EDUCON). 10.1109/EDUCON52537.2022.9766748. 978-1-6654-4434-7.
      (24-30).
      
      https://ieeexplore.ieee.org/document/9766748/

 101. Kejriwal M. (2022). Knowledge Graphs: A Practical Review of the Research
      Landscape. Information. 10.3390/info13040161. 13:4. (161).
      
      https://www.mdpi.com/2078-2489/13/4/161

 102. Cotumaccio N. (2022). Graphs can be succinctly indexed for pattern
      matching in $O(\vert E\vert ^{2}+\vert V\vert ^{5/2})$ time 2022 Data
      Compression Conference (DCC). 10.1109/DCC52660.2022.00035.
      978-1-6654-7893-9. (272-281).
      
      https://ieeexplore.ieee.org/document/9810716/

 103. Ahmadi Z, Parand F and Matinfar F. (2021). A fuzzy logic‐based approach
      for fuzzy queries over NoSQL graph database . Concurrency and Computation:
      Practice and Experience. 10.1002/cpe.6542. 34:1. Online publication date:
      10-Jan-2022.
      
      https://onlinelibrary.wiley.com/doi/10.1002/cpe.6542

 104. Marwaha H, Sharma A and Sharma V. (2022). Role of Graph Theory in
      Computational Neuroscience. Futuristic Design and Intelligent
      Computational Techniques in Neuroscience and Neuroengineering.
      10.4018/978-1-7998-7433-1.ch005. (86-97).
      
      http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-7433-1.ch005

 105. Yuan Y, Soh D, Yang X, Guo K and Quek T. (2022). GRACGE: Graph Signal
      Clustering and Multiple Graph Estimation. IEEE Transactions on Signal
      Processing. 70. (2015-2030). Online publication date: 1-Jan-2022.
      
      https://doi.org/10.1109/TSP.2022.3167145

 106. Xu Z, Wu H, Chen X, Wang Y and Yue Z. Building a Natural Language Query
      and Control Interface for IoT Platforms. IEEE Access.
      10.1109/ACCESS.2022.3186760. 10. (68655-68668).
      
      https://ieeexplore.ieee.org/document/9808139/

 107. Akid H, Frey G, Ayed M and Lachiche N. Performance of NoSQL Graph
      Implementations of Star vs. Snowflake Schemas. IEEE Access.
      10.1109/ACCESS.2022.3171256. 10. (48603-48614).
      
      https://ieeexplore.ieee.org/document/9769769/

 108. Sun N, Li C, Chan H, Dung Le B, Islam M, Zhang L, Islam M and Armstrong W.
      Defining Security Requirements With the Common Criteria: Applications,
      Adoptions, and Challenges. IEEE Access. 10.1109/ACCESS.2022.3168716. 10.
      (44756-44777).
      
      https://ieeexplore.ieee.org/document/9761799/

 109. Benjamin S, Christopher R and Carl H. (2023). Feature modeling for
      configurable and adaptable modular buildings. Advanced Engineering
      Informatics. 51:C. Online publication date: 1-Jan-2022.
      
      https://doi.org/10.1016/j.aei.2021.101514

 110. Giabelli A, Malandri L, Mercorio F and Mezzanzanica M. (2022). GraphLMI: A
      data driven system for exploring labor market information through graph
      databases. Multimedia Tools and Applications. 81:3. (3061-3090). Online
      publication date: 1-Jan-2022.
      
      https://doi.org/10.1007/s11042-020-09115-x

 111. Șimonca I, Corbea A and Belciu A. (2022). Analytical Capabilities of
      Graphs in Oracle Multimodel Database. Education, Research and Business
      Technologies. 10.1007/978-981-16-8866-9_9. (97-109).
      
      https://link.springer.com/10.1007/978-981-16-8866-9_9

 112. Ma Z, Li G and Ma R. (2022). RDF Data and Management. Modeling and
      Management of Fuzzy Semantic RDF Data. 10.1007/978-3-031-11669-8_1.
      (1-31).
      
      https://link.springer.com/10.1007/978-3-031-11669-8_1

 113. Natani G and Watanabe S. (2021). Knowledge Graph-based Data Transformation
      Recommendation Engine 2021 IEEE International Conference on Big Data (Big
      Data). 10.1109/BigData52589.2021.9671905. 978-1-6654-3902-2. (4617-4623).
      
      https://ieeexplore.ieee.org/document/9671905/

 114. Daverio P, Chaudhry H, Margara A and Rossi M. (2021). Temporal Pattern
      Recognition in Graph Data Structures 2021 IEEE International Conference on
      Big Data (Big Data). 10.1109/BigData52589.2021.9671837. 978-1-6654-3902-2.
      (2753-2763).
      
      https://ieeexplore.ieee.org/document/9671837/

 115. Purohit S, Van N and Chin G. (2021). Semantic Property Graph for Scalable
      Knowledge Graph Analytics 2021 IEEE International Conference on Big Data
      (Big Data). 10.1109/BigData52589.2021.9671547. 978-1-6654-3902-2.
      (2672-2677).
      
      https://ieeexplore.ieee.org/document/9671547/

 116. Zheng X, Xiao Y, Song W, Tong F, Liu S and Zhao D. (2021). COVID19-OBKG:
      An Ontology-Based Knowledge Graph and Web Service for COVID-19 2021 IEEE
      International Conference on Bioinformatics and Biomedicine (BIBM).
      10.1109/BIBM52615.2021.9669535. 978-1-6654-0126-5. (2456-2462).
      
      https://ieeexplore.ieee.org/document/9669535/

 117. Qassimi S, Abdelwahed E, Hafidi M and Qazdar A. (2021). Towards a
      folksonomy graph-based context-aware recommender system of annotated
      books. Journal of Big Data. 10.1186/s40537-021-00457-3. 8:1. Online
      publication date: 1-Dec-2021.
      
      https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00457-3

 118. Bollen E, Hendrix R, Kuijpers B and Vaisman A. (2021). Towards the
      Internet of Water: Using graph databases for hydrological analysis on the
      Flemish river system. Transactions in GIS. 10.1111/tgis.12801. 25:6.
      (2907-2938). Online publication date: 1-Dec-2021.
      
      https://onlinelibrary.wiley.com/doi/10.1111/tgis.12801

 119. Sharma C, Sinha R and Johnson K. (2021). Practical and comprehensive
      formalisms for modelling contemporary graph query languages. Information
      Systems. 102:C. Online publication date: 1-Dec-2021.
      
      https://doi.org/10.1016/j.is.2021.101816

 120. Lourdusamy R and Mattam X. (2021). A Knowledgebase Model Using RDF
      Knowledge Graph for ClinicalDecision Support Systems. Semantic Web for
      Effective Healthcare. 10.1002/9781119764175.ch10. (215-247). Online
      publication date: 23-Nov-2021.
      
      https://onlinelibrary.wiley.com/doi/10.1002/9781119764175.ch10

 121. Soleymani F and Paquet E. (2021). Deep graph convolutional reinforcement
      learning for financial portfolio management – DeepPocket. Expert Systems
      with Applications: An International Journal. 182:C. Online publication
      date: 15-Nov-2021.
      
      https://doi.org/10.1016/j.eswa.2021.115127

 122. Hogan A, Blomqvist E, Cochez M, d'Amato C, Melo G, Gutierrez C, Kirrane S,
      Gayo J, Navigli R, Neumaier S, Ngomo A, Polleres A, Rashid S, Rula A,
      Schmelzeisen L, Sequeda J, Staab S and Zimmermann A. (2021). Knowledge
      Graphs. Synthesis Lectures on Data, Semantics, and Knowledge.
      10.2200/S01125ED1V01Y202109DSK022. 12:2. (1-257). Online publication date:
      8-Nov-2021.
      
      https://www.morganclaypool.com/doi/10.2200/S01125ED1V01Y202109DSK022

 123. Kim L, Yahia E, Segonds F, Véron P and Mallet A. (2021). i-Dataquest.
      Computers in Industry. 132:C. Online publication date: 1-Nov-2021.
      
      https://doi.org/10.1016/j.compind.2021.103527

 124. Hajibabaee P, Malekzadeh M, Heidari M, Zad S, Uzuner O and Jones J.
      (2021). An Empirical Study of the GraphSAGE and Word2vec Algorithms for
      Graph Multiclass Classification 2021 IEEE 12th Annual Information
      Technology, Electronics and Mobile Communication Conference (IEMCON).
      10.1109/IEMCON53756.2021.9623238. 978-1-6654-0066-4. (0515-0522).
      
      https://ieeexplore.ieee.org/document/9623238/

 125. Hüseynli A and Akcayol M. Bloom Filter Based Graph Database CRUD
      Optimization for Stream Data. 2021 11th IEEE International Conference on
      Intelligent Data Acquisition and Advanced Computing Systems: Technology
      and Applications (IDAACS). (1056-1061).
      
      https://doi.org/10.1109/IDAACS53288.2021.9661054

 126. Huang S, Yen H, Liu Y, Tseng K, Kung J, Lin C, Li Y, Chen Y and Wang C.
      (2021). Cluster Tool Performance Analysis using Graph Database 2021 IEEE
      34th International System-on-Chip Conference (SOCC).
      10.1109/SOCC52499.2021.9739223. 978-1-6654-2931-3. (230-235).
      
      https://ieeexplore.ieee.org/document/9739223/

 127. Fernau H and Gajjar K. The Space Complexity of Sum Labelling. Fundamentals
      of Computation Theory. (230-244).
      
      https://doi.org/10.1007/978-3-030-86593-1_16

 128. Figueira D. Foundations of Graph Path Query Languages. Reasoning Web.
      Declarative Artificial Intelligence . (1-21).
      
      https://doi.org/10.1007/978-3-030-95481-9_1

 129. Debrouvier A, Parodi E, Perazzo M, Soliani V and Vaisman A. (2021). A
      model and query language for temporal graph databases. The VLDB Journal —
      The International Journal on Very Large Data Bases. 30:5. (825-858).
      Online publication date: 1-Sep-2021.
      
      https://doi.org/10.1007/s00778-021-00675-4

 130. Mavrogiorgos K, Kiourtis A, Mavrogiorgou A and Kyriazis D. A Comparative
      Study of MongoDB, ArangoDB and CouchDB for Big Data Storage. Proceedings
      of the 2021 5th International Conference on Cloud and Big Data Computing.
      (8-14).
      
      https://doi.org/10.1145/3481646.3481648

 131. de Anda-Jauregui G and Hernandez-Lemus E. (2021). Identification of
      Potential Adverse Drug Reactions using Random Walk on Network Models 2021
      Mexican International Conference on Computer Science (ENC).
      10.1109/ENC53357.2021.9534826. 978-1-6654-2612-1. (1-6).
      
      https://ieeexplore.ieee.org/document/9534826/

 132. Fan W, He T, Lai L, Li X, Li Y, Li Z, Qian Z, Tian C, Wang L, Xu J, Yao Y,
      Yin Q, Yu W, Zhou J, Zhu D and Zhu R. (2021). GraphScope. Proceedings of
      the VLDB Endowment. 14:12. (2879-2892). Online publication date:
      1-Jul-2021.
      
      https://doi.org/10.14778/3476311.3476369

 133. Nahar K, Gill A and Roach T. (2021). Developing an access control
      management metamodel for secure digital enterprise architecture modeling.
      SECURITY AND PRIVACY. 10.1002/spy2.160. 4:4. Online publication date:
      1-Jul-2021.
      
      https://onlinelibrary.wiley.com/doi/10.1002/spy2.160

 134. Angles R, Bonifati A, Dumbrava S, Fletcher G, Hare K, Hidders J, Lee V, Li
      B, Libkin L, Martens W, Murlak F, Perryman J, Savković O, Schmidt M,
      Sequeda J, Staworko S and Tomaszuk D. PG-Keys: Keys for Property Graphs.
      Proceedings of the 2021 International Conference on Management of Data.
      (2423-2436).
      
      https://doi.org/10.1145/3448016.3457561

 135. Arenas M, Gutierrez C and Sequeda J. Querying in the Age of Graph
      Databases and Knowledge Graphs. Proceedings of the 2021 International
      Conference on Management of Data. (2821-2828).
      
      https://doi.org/10.1145/3448016.3457545

 136. DEĞERLİ A. (2021). AĞ TOPLUMU YAKLAŞIMI İLE AKADEMİK BİR SOSYAL AĞ MODELİ
      İÇİN GRAF VERİ TABANI ÖNERİSİ. Beykoz Akademi Dergisi.
      10.14514/BYK.m.26515393.2021.9/1.68-88. (68-88).
      
      https://dergipark.org.tr/tr/doi/10.14514/BYK.m.26515393.2021.9/1.68-88

 137. Ramis Ferrer B, Mohammed W, Ahmad M, Iarovyi S, Zhang J, Harrison R and
      Martinez Lastra J. (2021). Comparing ontologies and databases: a critical
      review of lifecycle engineering models in manufacturing. Knowledge and
      Information Systems. 63:6. (1271-1304). Online publication date:
      1-Jun-2021.
      
      https://doi.org/10.1007/s10115-021-01558-4

 138. Schneider S, Lambers L and Orejas F. (2021). A logic-based incremental
      approach to graph repair featuring delta preservation. International
      Journal on Software Tools for Technology Transfer (STTT). 23:3. (369-410).
      Online publication date: 1-Jun-2021.
      
      https://doi.org/10.1007/s10009-020-00584-x

 139. Timón-Reina S, Rincón M and Martínez-Tomás R. (2021). An overview of graph
      databases and their applications in the biomedical domain. Database.
      10.1093/database/baab026. 2021. Online publication date: 18-May-2021.
      
      https://academic.oup.com/database/article/doi/10.1093/database/baab026/6277712

 140. Nicolaescu A, Mastorakis S and Psaras I. Store Edge Networked Data (SEND):
      A Data and Performance Driven Edge Storage Framework. IEEE INFOCOM 2021 -
      IEEE Conference on Computer Communications. (1-10).
      
      https://doi.org/10.1109/INFOCOM42981.2021.9488804

 141. Kuhn M and Franke J. (2021). Data continuity and traceability in complex
      manufacturing systems: a graph-based modeling approach. International
      Journal of Computer Integrated Manufacturing.
      10.1080/0951192X.2021.1901320. (1-18).
      
      https://www.tandfonline.com/doi/full/10.1080/0951192X.2021.1901320

 142. Komatani K, Fujioka Y, Nakashima K, Hayashi K and Nakano M. Knowledge
      Graph Completion-based Question Selection for Acquiring Domain Knowledge
      through Dialogues. Proceedings of the 26th International Conference on
      Intelligent User Interfaces. (531-541).
      
      https://doi.org/10.1145/3397481.3450653

 143. Kashef M, Liu Y, Montgomery K and Candell R. (2020). Wireless
      Cyber-Physical System Performance Evaluation Through a Graph Database
      Approach. Journal of Computing and Information Science in Engineering.
      10.1115/1.4048205. 21:2. Online publication date: 1-Apr-2021.
      
      https://asmedigitalcollection.asme.org/computingengineering/article/doi/10.1115/1.4048205/1086513/Wireless-CyberPhysical-System-Performance

 144. Qiao R, Feng K, He H and Zhong X. (2020). Graph Pattern Matching:
      Capturing Bisimilar Subgraph. International Journal of Pattern Recognition
      and Artificial Intelligence. 10.1142/S0218001421500117. 35:03. (2150011).
      Online publication date: 15-Mar-2021.
      
      https://www.worldscientific.com/doi/abs/10.1142/S0218001421500117

 145. Krommyda M and Kantere V. (2021). Spatial Data Management in IoT Systems:
      Solutions and Evaluation. International Journal of Semantic Computing.
      10.1142/S1793351X21300016. 15:01. (117-139). Online publication date:
      1-Mar-2021.
      
      https://www.worldscientific.com/doi/abs/10.1142/S1793351X21300016

 146. Giabelli A, Malandri L, Mercorio F, Mezzanzanica M and Seveso A. (2021).
      Skills2Job. Applied Soft Computing. 101:C. Online publication date:
      1-Mar-2021.
      
      https://doi.org/10.1016/j.asoc.2020.107049

 147. Zhou Z, Shi C, Shen X, Cai L, Wang H, Liu Y, Zhao Y and Chen W.
      Context-aware Sampling of Large Networks via Graph Representation
      Learning. IEEE Transactions on Visualization and Computer Graphics.
      10.1109/TVCG.2020.3030440. 27:2. (1709-1719).
      
      https://ieeexplore.ieee.org/document/9224191/

 148. Šestak M, Heričko M, Družovec T and Turkanović M. (2021). Applying
      k-vertex cardinality constraints on a Neo4j graph database. Future
      Generation Computer Systems. 10.1016/j.future.2020.09.036. 115. (459-474).
      Online publication date: 1-Feb-2021.
      
      https://linkinghub.elsevier.com/retrieve/pii/S0167739X19324094

 149. Rabuzin K and Šestak M. (2021). Graph Database Management Systems.
      Encyclopedia of Information Science and Technology, Fifth Edition.
      10.4018/978-1-7998-3479-3.ch053. (778-790).
      
      http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-3479-3.ch053

 150. Kattepur A. (2021). Knowledge-Driven Autonomous Robotic Action Planning
      for Industry 4.0. Innovations in the Industrial Internet of Things (IIoT)
      and Smart Factory. 10.4018/978-1-7998-3375-8.ch011. (149-171).
      
      http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-3375-8.ch011

 151. Nadal S, Abello A, Romero O, Vansummeren S and Vassiliadis P. Graph-driven
      Federated Data Management. IEEE Transactions on Knowledge and Data
      Engineering. 10.1109/TKDE.2021.3077044. (1-1).
      
      https://ieeexplore.ieee.org/document/9422168/

 152. Wu X, Jiang T, Zhu Y and Bu C. Knowledge Graph for China's Genealogy. IEEE
      Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2021.3073745.
      (1-1).
      
      https://ieeexplore.ieee.org/document/9409650/

 153. Samaraweera G and Chang J. Security and Privacy Implications on Database
      Systems in Big Data Era: A Survey. IEEE Transactions on Knowledge and Data
      Engineering. 10.1109/TKDE.2019.2929794. 33:1. (239-258).
      
      https://ieeexplore.ieee.org/document/8765784/

 154. Mostajabi F, Safaei A and Sahafi A. A Systematic Review of Data Models for
      the Big Data Problem. IEEE Access. 10.1109/ACCESS.2021.3112880. 9.
      (128889-128904).
      
      https://ieeexplore.ieee.org/document/9537765/

 155. Ruiz-Saavedra S, García-González H, Arboleya S, Salazar N, Emilio
      Labra-Gayo J, Díaz I, Gueimonde M, González S and de los Reyes-Gavilán C.
      (2021). Intestinal microbiota alterations by dietary exposure to chemicals
      from food cooking and processing. Application of data science for risk
      prediction. Computational and Structural Biotechnology Journal.
      10.1016/j.csbj.2021.01.037. 19. (1081-1091).
      
      https://linkinghub.elsevier.com/retrieve/pii/S2001037021000416

 156. Ziegler J, Reimann P, Keller F and Mitschang B. (2021). A Metadata Model
      to Connect Isolated Data Silos and Activities of the CAE Domain. Advanced
      Information Systems Engineering. 10.1007/978-3-030-79382-1_13. (213-228).
      
      https://link.springer.com/10.1007/978-3-030-79382-1_13

 157. Ahmed A, Enns K and Thomo A. (2021). Triangle Enumeration for
      Billion-Scale Graphs in RDBMS. Advanced Information Networking and
      Applications. 10.1007/978-3-030-75075-6_13. (160-173).
      
      https://link.springer.com/10.1007/978-3-030-75075-6_13

 158. Jalali A. (2021). Graph-Based Process Mining. Process Mining Workshops.
      10.1007/978-3-030-72693-5_21. (273-285).
      
      http://link.springer.com/10.1007/978-3-030-72693-5_21

 159. Ahmed A and Thomo A. (2021). PageRank for Billion-Scale Networks in RDBMS.
      Advances in Intelligent Networking and Collaborative Systems.
      10.1007/978-3-030-57796-4_9. (89-100).
      
      http://link.springer.com/10.1007/978-3-030-57796-4_9

 160. Matter H, Buning C, Stefanescu D, Ruf S and Hessler G. (2020). Using Graph
      Databases to Investigate Trends in Structure–Activity Relationship
      Networks. Journal of Chemical Information and Modeling.
      10.1021/acs.jcim.0c00947. 60:12. (6120-6134). Online publication date:
      28-Dec-2021.
      
      https://pubs.acs.org/doi/10.1021/acs.jcim.0c00947

 161. Ma F, Ma S and Liu Q. (2020). Graphical Probability Model and Heritage
      Tourism Routine Design 2020 IEEE 20th International Conference on Software
      Quality, Reliability and Security Companion (QRS-C).
      10.1109/QRS-C51114.2020.00094. 978-1-7281-8915-4. (535-541).
      
      https://ieeexplore.ieee.org/document/9282680/

 162. Rizvi S and Fong P. (2020). Efficient Authorization of Graph-database
      Queries in an Attribute-supporting ReBAC Model. ACM Transactions on
      Privacy and Security. 23:4. (1-33). Online publication date: 30-Nov-2020.
      
      https://doi.org/10.1145/3401027

 163. Komar K, Santra A, Bhowmick S and Chakravarthy S. EERMLN: EER Approach for
      Modeling, Mapping, and Analyzing Complex Data Using Multilayer Networks
      (MLNs). Conceptual Modeling. (555-572).
      
      https://doi.org/10.1007/978-3-030-62522-1_41

 164. Wu H, Fu Z and Wang Y. (2020). A medical network clustering method with
      weighted graph structure. Measurement and Control.
      10.1177/0020294020952469. 53:9-10. (1751-1759). Online publication date:
      1-Nov-2020.
      
      http://journals.sagepub.com/doi/10.1177/0020294020952469

 165. Chen L, Goranci G, Henzinger M, Peng R and Saranurak T. (2020). Fast
      Dynamic Cuts, Distances and Effective Resistances via Vertex Sparsifiers
      2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).
      10.1109/FOCS46700.2020.00109. 978-1-7281-9621-3. (1135-1146).
      
      https://ieeexplore.ieee.org/document/9317991/

 166. Canbaz Y, Dogrusoz U, Celiksoy M, Gungor F and Kurban K. (2020). Hydra:
      detecting fraud in financial transactions via graph based representation
      and visual analysis 2020 4th International Symposium on Multidisciplinary
      Studies and Innovative Technologies (ISMSIT).
      10.1109/ISMSIT50672.2020.9255191. 978-1-7281-9090-7. (1-6).
      
      https://ieeexplore.ieee.org/document/9255191/

 167. Badica C and Mladin S. (2020). Conference Support System through
      Scientometry and Collaboration Analytics 2020 24th International
      Conference on System Theory, Control and Computing (ICSTCC).
      10.1109/ICSTCC50638.2020.9259731. 978-1-7281-9809-5. (546-552).
      
      https://ieeexplore.ieee.org/document/9259731/

 168. Lambers L, Schneider S and Weisgut M. (2020). Model-Based Testing of Read
      Only Graph Queries 2020 IEEE International Conference on Software Testing,
      Verification and Validation Workshops (ICSTW).
      10.1109/ICSTW50294.2020.00022. 978-1-7281-1075-2. (24-34).
      
      https://ieeexplore.ieee.org/document/9155876/

 169. Zhang W, Shang R and Jiao L. (2020). Complex network graph embedding
      method based on shortest path and MOEA/D for community detection. Applied
      Soft Computing. 10.1016/j.asoc.2020.106764. (106764). Online publication
      date: 1-Oct-2020.
      
      https://linkinghub.elsevier.com/retrieve/pii/S156849462030702X

 170. Frozza A and Mello R. (2020). JS4Geo: a canonical JSON Schema for
      geographic data suitable to NoSQL databases. Geoinformatica. 24:4.
      (987-1019). Online publication date: 1-Oct-2020.
      
      https://doi.org/10.1007/s10707-020-00415-w

 171. Reina F, Huf A, Presser D and Siqueira F. Modeling and Enforcing Integrity
      Constraints on Graph Databases. Database and Expert Systems Applications.
      (269-284).
      
      https://doi.org/10.1007/978-3-030-59003-1_18

 172. Krommyda M and Kantere V. (2020). Spatial Data Management in IoT systems:
      A study of available storage and indexing solutions 2020 Second
      International Conference on Transdisciplinary AI (TransAI).
      10.1109/TransAI49837.2020.00033. 978-1-7281-8699-3. (146-153).
      
      https://ieeexplore.ieee.org/document/9253152/

 173. Mondal S, Basu A and Mukherjee N. (2020). Building a trust-based doctor
      recommendation system on top of multilayer graph database. Journal of
      Biomedical Informatics. 10.1016/j.jbi.2020.103549. (103549). Online
      publication date: 1-Aug-2020.
      
      https://linkinghub.elsevier.com/retrieve/pii/S1532046420301775

 174. Arsintescu B, Deo S and Harris W. (2019). PathQuery Pregel:
      high-performance graph query with bulk synchronous processing. Pattern
      Analysis and Applications. 10.1007/s10044-019-00841-z. 23:3. (1493-1504).
      Online publication date: 1-Aug-2020.
      
      http://link.springer.com/10.1007/s10044-019-00841-z

 175. Veerman J and Lyons R. (2020). A Primer on Laplacian Dynamics in Directed
      Graphs. Nonlinear Phenomena in Complex Systems.
      10.33581/1561-4085-2020-23-2-196-206. 23:2. (196-206). Online publication
      date: 9-Jul-2020.
      
      http://www.j-npcs.org/abstracts/vol2020/v23no2/v23no2p196.html

 176. Chen D, Jalilifard A, Veloso A and Ziviani N. (2020). Modeling
      Pharmacological Effects with Multi-Relation Unsupervised Graph Embedding
      2020 International Joint Conference on Neural Networks (IJCNN).
      10.1109/IJCNN48605.2020.9206668. 978-1-7281-6926-2. (1-7).
      
      https://ieeexplore.ieee.org/document/9206668/

 177. Arias J. (2020). The Benefits of Graph Databases for the Computation of
      Clinical Quality Measures 2020 IEEE 33rd International Symposium on
      Computer-Based Medical Systems (CBMS). 10.1109/CBMS49503.2020.00088.
      978-1-7281-9429-5. (433-436).
      
      https://ieeexplore.ieee.org/document/9182798/

 178. Patibandla R. (2020). Regularization of Graphs. Recommender System with
      Machine Learning and Artificial Intelligence. 10.1002/9781119711582.ch19.
      (373-386). Online publication date: 17-Jun-2020.
      
      https://onlinelibrary.wiley.com/doi/10.1002/9781119711582.ch19

 179. Sunkle S, Saxena K, Patil A, Kulkarni V, Jain D, Chacko R and Rai B.
      Information Extraction and Graph Representation for the Design of
      Formulated Products. Advanced Information Systems Engineering. (433-448).
      
      https://doi.org/10.1007/978-3-030-49435-3_27

 180. Pivert O, Scholly E, Smits G and Thion V. (2020). Fuzzy quality-Aware
      queries to graph databases. Information Sciences: an International
      Journal. 521:C. (160-173). Online publication date: 1-Jun-2020.
      
      https://doi.org/10.1016/j.ins.2020.02.035

 181. Azad P, Navimipour N, Rahmani A and Sharifi A. (2020). The role of
      structured and unstructured data managing mechanisms in the Internet of
      things. Cluster Computing. 23:2. (1185-1198). Online publication date:
      1-Jun-2020.
      
      https://doi.org/10.1007/s10586-019-02986-2

 182. Lu J and Holubová I. (2019). Multi-model Databases. ACM Computing Surveys.
      52:3. (1-38). Online publication date: 31-May-2020.
      
      https://doi.org/10.1145/3323214

 183. Gómez L, Kuijpers B and Vaisman A. Online analytical processsing on graph
      data. Intelligent Data Analysis. 10.3233/IDA-194576. 24:3. (515-541).
      
      https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDA-194576

 184. Polyvyanyy A, Pika A and Hofstede A. (2020). Scenario-based process
      querying for compliance, reuse, and standardization. Information Systems.
      10.1016/j.is.2020.101563. (101563). Online publication date: 1-May-2020.
      
      https://linkinghub.elsevier.com/retrieve/pii/S0306437920300569

 185. Ahmed A, Hassan Z and Shabbir M. (2020). Interpretable Multi-Scale Graph
      Descriptors via Structural Compression. Information Sciences.
      10.1016/j.ins.2020.05.032. Online publication date: 1-May-2020.
      
      https://linkinghub.elsevier.com/retrieve/pii/S0020025520304266

 186. Jovanovic P, Nadal S, Romero O, Abelló A and Bilalli B. (2020). Quarry: A
      User-centered Big Data Integration Platform. Information Systems
      Frontiers. 10.1007/s10796-020-10001-y.
      
      http://link.springer.com/10.1007/s10796-020-10001-y

 187. Lin P, Song Q, Wu Y and Pi J. (2020). Repairing Entities using Star
      Constraints in Multirelational Graphs 2020 IEEE 36th International
      Conference on Data Engineering (ICDE). 10.1109/ICDE48307.2020.00027.
      978-1-7281-2903-7. (229-240).
      
      https://ieeexplore.ieee.org/document/9101352/

 188. Candell R, Kashef M, Liu Y, Montgomery K and Foufou S. (2020). A Graph
      Database Approach to Wireless IIoT Workcell Performance Evaluation 2020
      IEEE International Conference on Industrial Technology (ICIT).
      10.1109/ICIT45562.2020.9067199. 978-1-7281-5754-2. (251-258).
      
      https://ieeexplore.ieee.org/document/9067199/

 189. Shimomura L, Oyamada R, Vieira M and Kaster D. (2020). A survey on
      graph-based methods for similarity searches in metric spaces. Information
      Systems. 10.1016/j.is.2020.101507. (101507). Online publication date:
      1-Feb-2020.
      
      https://linkinghub.elsevier.com/retrieve/pii/S0306437920300181

 190. Polyakov I, Chepovskiy A and Chepovskiy A. (2020). Data Compression in Big
      Graph Warehouse. Journal of Mathematical Sciences.
      10.1007/s10958-020-04686-4.
      
      http://link.springer.com/10.1007/s10958-020-04686-4

 191. Bayitaa S, Nanor E, Kpiebaareh M, Agyemang B and Wu W. Graph Based
      Analytics Enhanced by Deep Learning. Proceedings of 2020 6th International
      Conference on Computing and Data Engineering. (39-43).
      
      https://doi.org/10.1145/3379247.3379286

 192. Sunkle S, Jain D, Saxena K, Patil A, Chacko R and Rai B. (2020). Generate
      and Test for Formulated Product Variants With Information Extraction and
      an In-Silico Model. Advanced Digital Architectures for Model-Driven
      Adaptive Enterprises. 10.4018/978-1-7998-0108-5.ch010. (223-250).
      
      http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-0108-5.ch010

 193. Dhiman A and Toshniwal D. An Approximate Model for Event Detection From
      Twitter Data. IEEE Access. 10.1109/ACCESS.2020.3007004. 8.
      (122168-122184).
      
      https://ieeexplore.ieee.org/document/9133064/

 194. Chen F, Wang Y, Wang B and Kuo C. (2020). (2020). Graph representation
      learning: a survey. APSIPA Transactions on Signal and Information
      Processing. 10.1017/ATSIP.2020.13. 9:1.
      
      http://www.nowpublishers.com/article/Details/SIP-151

 195. Guzzi P and Roy S. (2020). Biological network databases. Biological
      Network Analysis. 10.1016/B978-0-12-819350-1.00011-6. (77-93).
      
      https://linkinghub.elsevier.com/retrieve/pii/B9780128193501000116

 196. Chen J, Song Q, Zhao C and Li Z. (2020). Graph Database and Relational
      Database Performance Comparison on a Transportation Network. Advances in
      Computing and Data Sciences. 10.1007/978-981-15-6634-9_37. (407-418).
      
      http://link.springer.com/10.1007/978-981-15-6634-9_37

 197. Wang X and Chen W. (2020). Knowledge Graph Data Management: Models,
      Methods, and Systems. Web Information Systems Engineering.
      10.1007/978-981-15-3281-8_1. (3-12).
      
      http://link.springer.com/10.1007/978-981-15-3281-8_1

 198. Zhuge H. (2020). Cyber-Physical-Social Semantic Link Network.
      Cyber-Physical-Social Intelligence. 10.1007/978-981-13-7311-4_3. (55-141).
      
      http://link.springer.com/10.1007/978-981-13-7311-4_3

 199. Khosrowjerdi H, Nemati H and Meinke K. (2020). Spatio-Temporal
      Model-Checking of Cyber-Physical Systems Using Graph Queries. Tests and
      Proofs. 10.1007/978-3-030-50995-8_4. (59-79).
      
      http://link.springer.com/10.1007/978-3-030-50995-8_4

 200. Banning E. (2020). Compilations: Designing and Using Archaeological
      Databases. The Archaeologist's Laboratory. 10.1007/978-3-030-47992-3_4.
      (43-58).
      
      http://link.springer.com/10.1007/978-3-030-47992-3_4

 201. Lukyanenko R and Parsons J. (2020). Easier Crowdsourcing Is Better:
      Designing Crowdsourcing Systems to Increase Information Quality and User
      Participation. Design Science Research. Cases.
      10.1007/978-3-030-46781-4_3. (43-72).
      
      http://link.springer.com/10.1007/978-3-030-46781-4_3

 202. Fensel D, Şimşek U, Angele K, Huaman E, Kärle E, Panasiuk O, Toma I,
      Umbrich J and Wahler A. (2020). How to Build a Knowledge Graph. Knowledge
      Graphs. 10.1007/978-3-030-37439-6_2. (11-68).
      
      http://link.springer.com/10.1007/978-3-030-37439-6_2

 203. Fensel D, Şimşek U, Angele K, Huaman E, Kärle E, Panasiuk O, Toma I,
      Umbrich J and Wahler A. (2020). Introduction: What Is a Knowledge Graph?.
      Knowledge Graphs. 10.1007/978-3-030-37439-6_1. (1-10).
      
      http://link.springer.com/10.1007/978-3-030-37439-6_1

 204. Sharma C and Sinha R. A Schema-First Formalism for Labeled Property Graph
      Databases. Proceedings of the 6th IEEE/ACM International Conference on Big
      Data Computing, Applications and Technologies. (71-80).
      
      https://doi.org/10.1145/3365109.3368782

 205. Prabhu S, Murthy K and Subramanyam N. (2019). Validating Tantra Framework
      using entropy. Social Network Analysis and Mining.
      10.1007/s13278-019-0562-1. 9:1. Online publication date: 1-Dec-2019.
      
      http://link.springer.com/10.1007/s13278-019-0562-1

 206. Mennicke S. Modal Schema Graphs for Graph Databases. Conceptual Modeling.
      (498-512).
      
      https://doi.org/10.1007/978-3-030-33223-5_41

 207. Steinmetz D, Merz F, Ma H and Hartmann S. A Graph Model for Taxi Ride
      Sharing Supported by Graph Databases. Conceptual Modeling. (108-116).
      
      https://doi.org/10.1007/978-3-030-33223-5_10

 208. Sheng S, Zhou P and Wu X. (2019). CEPV: A Tree Structure Information
      Extraction and Visualization Tool for Big Knowledge Graph 2019 IEEE
      International Conference on Big Knowledge (ICBK). 10.1109/ICBK.2019.00037.
      978-1-7281-4607-2. (221-228).
      
      https://ieeexplore.ieee.org/document/8944537/

 209. Qian Q, Wang Y and Zhao S. (2019). Materials data specification: Methods
      and use cases. Computational Materials Science.
      10.1016/j.commatsci.2019.109086. 169. (109086). Online publication date:
      1-Nov-2019.
      
      https://linkinghub.elsevier.com/retrieve/pii/S0927025619303775

 210. Wirawan P, Er Riyanto D, Nugraheni D and Yasmin Y. (2019). Graph Database
      Schema for Multimodal Transportation in Semarang. Journal of Information
      Systems Engineering and Business Intelligence.
      10.20473/jisebi.5.2.163-170. 5:2. (163).
      
      https://e-journal.unair.ac.id/JISEBI/article/view/12013

 211. Meixner K, Winkler D, Wapp M, Rosendahl R and Biffl S. Investigating the
      Performance of selected Data Storage Concepts for AutomationML Models.
      IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics
      Society. (2785-2791).
      
      https://doi.org/10.1109/IECON.2019.8927275

 212. Gómez L, Kuijpers B and Vaisman A. (2019). Analytical queries on semantic
      trajectories using graph databases. Transactions in GIS.
      10.1111/tgis.12556. 23:5. (1078-1101). Online publication date:
      1-Oct-2019.
      
      https://onlinelibrary.wiley.com/doi/10.1111/tgis.12556

 213. Wu J and Nakamoto Y. (2019). RelSeeker: Relationship-based Query Language
      in a Graph Database for Social Networks 2019 Sixth International
      Conference on Social Networks Analysis, Management and Security (SNAMS).
      10.1109/SNAMS.2019.8931872. 978-1-7281-2946-4. (268-273).
      
      https://ieeexplore.ieee.org/document/8931872/

 214. Barakat O, Ventre P, Salsano S and Fu X. (2019). Busoni: Policy
      Composition and Northbound Interface for IPv6 Segment Routing Networks
      2019 IEEE 27th International Conference on Network Protocols (ICNP).
      10.1109/ICNP.2019.8888104. 978-1-7281-2700-2. (1-4).
      
      https://ieeexplore.ieee.org/document/8888104/

 215. Veerman J and Kummel E. (2019). Diffusion and consensus on weakly
      connected directed graphs. Linear Algebra and its Applications.
      10.1016/j.laa.2019.05.014. 578. (184-206). Online publication date:
      1-Oct-2019.
      
      https://linkinghub.elsevier.com/retrieve/pii/S002437951930223X

 216. Surinx D, Van den Bussche J and Van Gucht D. (2019). A framework for
      comparing query languages in their ability to express boolean queries.
      Annals of Mathematics and Artificial Intelligence. 87:1-2. (157-184).
      Online publication date: 1-Oct-2019.
      
      https://doi.org/10.1007/s10472-019-09639-5

 217. Reyes A, Hernandez A, Gutierrez R, Bolivar N, Jimenez D, Bastidas J and
      Solano J. (2019). A Novel Extended Graph Strategy to Model Microgrids 2019
      International Conference on Smart Energy Systems and Technologies (SEST).
      10.1109/SEST.2019.8849117. 978-1-7281-1156-8. (1-6).
      
      https://ieeexplore.ieee.org/document/8849117/

 218. Anikin D, Borisenko O and Nedumov Y. (2019). Labeled Property Graphs: SQL
      or NoSQL? 2019 Ivannikov Memorial Workshop (IVMEM).
      10.1109/IVMEM.2019.00007. 978-1-7281-4623-2. (7-13).
      
      https://ieeexplore.ieee.org/document/8880730/

 219. Álvarez-García S, Freire B, Ladra S and Pedreira Ó. (2022). Compact and
      efficient representation of general graph databases. Knowledge and
      Information Systems. 60:3. (1479-1510). Online publication date:
      1-Sep-2019.
      
      https://doi.org/10.1007/s10115-018-1275-x

 220. Wang Q, He S, Zheng X and Zeng D. (2019). Marketing Pattern Risks
      Detection Based on Semi-Supervised Learning 2019 IEEE International
      Conference on Intelligence and Security Informatics (ISI).
      10.1109/ISI.2019.8823291. 978-1-7281-2504-6. (229-229).
      
      https://ieeexplore.ieee.org/document/8823291/

 221. Sharma C, Sinha R and Leitao P. (2019). IASelect: Finding Best-fit Agent
      Practices in Industrial CPS Using Graph Databases 2019 IEEE 17th
      International Conference on Industrial Informatics (INDIN).
      10.1109/INDIN41052.2019.8972272. 978-1-7281-2927-3. (1558-1563).
      
      https://ieeexplore.ieee.org/document/8972272/

 222. Yerashenia N and Bolotov A. (2019). Computational Modelling for Bankruptcy
      Prediction: Semantic Data Analysis Integrating Graph Database and
      Financial Ontology 2019 IEEE 21st Conference on Business Informatics
      (CBI). 10.1109/CBI.2019.00017. 978-1-7281-0650-2. (84-93).
      
      https://ieeexplore.ieee.org/document/8808039/

 223. Pivert O, Slama O and Thion V. (2019). Expression and efficient evaluation
      of fuzzy quantified structural queries to fuzzy graph databases. Fuzzy
      Sets and Systems. 366:C. (3-17). Online publication date: 1-Jul-2019.
      
      https://doi.org/10.1016/j.fss.2018.06.002

 224. Petnga L. (2019). Graph‐based Assessment and Analysis of System
      Architecture Models. INCOSE International Symposium.
      10.1002/j.2334-5837.2019.00644.x. 29:1. (922-936). Online publication
      date: 1-Jul-2019.
      
      https://incose.onlinelibrary.wiley.com/doi/10.1002/j.2334-5837.2019.00644.x

 225. Chaudhry H. FlowGraph. Proceedings of the 13th ACM International
      Conference on Distributed and Event-based Systems. (272-275).
      
      https://doi.org/10.1145/3328905.3332303

 226. Tahboub R, Wu X, Essertel G and Rompf T. Towards compiling graph queries
      in relational engines. Proceedings of the 17th ACM SIGPLAN International
      Symposium on Database Programming Languages. (30-41).
      
      https://doi.org/10.1145/3315507.3330200

 227. Costa B and Cura L. An Neo4j implementation for designing fuzzy graph
      databases. Proceedings of the 23rd International Database Applications &
      Engineering Symposium. (1-6).
      
      https://doi.org/10.1145/3331076.3331082

 228. Ma H, Alipourlangouri M, Wu Y, Chiang F and Pi J. (2019). Ontology-based
      entity matching in attributed graphs. Proceedings of the VLDB Endowment.
      12:10. (1195-1207). Online publication date: 1-Jun-2019.
      
      https://doi.org/10.14778/3339490.3339501

 229. Barakat O, Koll D and Fu X. Gavel: A Fast and Easy-to-Use Plain Data
      Representation for Software-Defined Networks. IEEE Transactions on Network
      and Service Management. 10.1109/TNSM.2019.2903440. 16:2. (606-617).
      
      https://ieeexplore.ieee.org/document/8661512/

 230. Hajeer M and Dasgupta D. Handling Big Data Using a Data-Aware HDFS and
      Evolutionary Clustering Technique. IEEE Transactions on Big Data.
      10.1109/TBDATA.2017.2782785. 5:2. (134-147).
      
      https://ieeexplore.ieee.org/document/8197362/

 231. Heidari S, Simmhan Y, Calheiros R and Buyya R. (2018). Scalable Graph
      Processing Frameworks. ACM Computing Surveys. 51:3. (1-53). Online
      publication date: 31-May-2019.
      
      https://doi.org/10.1145/3199523

 232. Moore J, Boland M, Camara P, Chervitz H, Gonzalez G, Himes B, Kim D,
      Mowery D, Ritchie M, Shen L, Urbanowicz R and Holmes J. (2019). Preparing
      next-generation scientists for biomedical big data: artificial
      intelligence approaches. Personalized Medicine. 10.2217/pme-2018-0145.
      16:3. (247-257). Online publication date: 1-May-2019.
      
      https://www.tandfonline.com/doi/full/10.2217/pme-2018-0145

 233. Sinha R, Dowdeswell B, Zhabelova G and Vyatkin V. (2018). TORUS. ACM
      Transactions on Cyber-Physical Systems. 3:2. (1-25). Online publication
      date: 30-Apr-2019.
      
      https://doi.org/10.1145/3203208

 234. Kattepur A and P B. RoboPlanner. Proceedings of the 34th ACM/SIGAPP
      Symposium on Applied Computing. (953-956).
      
      https://doi.org/10.1145/3297280.3297568

 235. Quaas K and Shirmohammadi M. (2019). Synchronizing Data Words for Register
      Automata. ACM Transactions on Computational Logic. 20:2. (1-27). Online
      publication date: 4-Apr-2019.
      
      https://doi.org/10.1145/3309760

 236. Davoudian A, Chen L and Liu M. (2018). A Survey on NoSQL Stores. ACM
      Computing Surveys. 51:2. (1-43). Online publication date: 31-Mar-2019.
      
      https://doi.org/10.1145/3158661

 237. Lukyanenko R, Parsons J and Samuel B. (2018). Representing instances: the
      case for reengineering conceptual modelling grammars. European Journal of
      Information Systems. 10.1080/0960085X.2018.1488567. 28:1. (68-90). Online
      publication date: 2-Jan-2019.
      
      https://www.tandfonline.com/doi/full/10.1080/0960085X.2018.1488567

 238. Van Erven G, Carvalho R, Cordeiro da Silva W, Lifschitz S, Vera-Olivera H
      and Holanda M. Designing Graph Databases With GRAPHED. Journal of Database
      Management. 10.4018/JDM.2019010103. 30:1. (41-60).
      
      http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/JDM.2019010103

 239. Lukyanenko R and Parsons J. (2019). Beyond Micro-Tasks. Crowdsourcing.
      10.4018/978-1-5225-8362-2.ch076. (1510-1535).
      
      http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-8362-2.ch076

 240. Lukyanenko R and Parsons J. (2019). Beyond Micro-Tasks. Social
      Entrepreneurship. 10.4018/978-1-5225-8182-6.ch072. (1403-1428).
      
      http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-8182-6.ch072

 241. Guerreiro S. Challenges of Meta Access Control Model Enforcement to an
      Increased Interoperability. Advanced Methodologies and Technologies in
      Business Operations and Management. 10.4018/978-1-5225-7362-3.ch018.
      (247-258).
      
      http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-7362-3.ch018

 242. Kejriwal M, Lopez V, Sequeda J, Fionda V, Pirrò G, Consens M, Kejriwal M,
      Lopez V and Sequeda J. (2019). Querying knowledge graphs with extended
      property paths. Semantic Web. 10:6. (1127-1168). Online publication date:
      1-Jan-2019.
      
      https://doi.org/10.3233/SW-190365

 243. Yuan Y, Soh D, Yang H and Quek T. Learning Overlapping Community-based
      Networks. IEEE Transactions on Signal and Information Processing over
      Networks. 10.1109/TSIPN.2019.2936361. (1-1).
      
      https://ieeexplore.ieee.org/document/8807284/

 244. Reddy K. Interactive Graph Data Integration System With Spatial-Oriented
      Visualization and Feedback-Driven Provenance. IEEE Access.
      10.1109/ACCESS.2019.2928847. 7. (101336-101344).
      
      https://ieeexplore.ieee.org/document/8763970/

 245. Tushkanova O and Samoylov V. (2019). Knowledge Net: Model and System for
      Accumulation, Representation, and Use of Knowledge. IFAC-PapersOnLine.
      10.1016/j.ifacol.2019.11.351. 52:13. (1150-1155).
      
      https://linkinghub.elsevier.com/retrieve/pii/S2405896319313291

 246. Paulin A. (2019). Choosing Fitting Technology. Smart City Governance.
      10.1016/B978-0-12-816224-8.00012-1. (219-236).
      
      https://linkinghub.elsevier.com/retrieve/pii/B9780128162248000121

 247. Dhillon S. (2019). Biological Databases. Encyclopedia of Bioinformatics
      and Computational Biology. 10.1016/B978-0-12-809633-8.20198-2. (96-117).
      
      https://linkinghub.elsevier.com/retrieve/pii/B9780128096338201982

 248. Bolla S, Tirumalasetty S and Jyothi S. (2019). Anatomization of
      Document-Based NoSQL Databases. Innovations in Computer Science and
      Engineering. 10.1007/978-981-13-7082-3_65. (569-577).
      
      http://link.springer.com/10.1007/978-981-13-7082-3_65

 249. Meier A and Kaufmann M. (2019). NoSQL Databases. SQL & NoSQL Databases.
      10.1007/978-3-658-24549-8_7. (201-218).
      
      http://link.springer.com/10.1007/978-3-658-24549-8_7

 250. Paradies M, Plantikow S and Rest O. (2019). Graph Data Management Systems.
      Encyclopedia of Big Data Technologies. 10.1007/978-3-319-77525-8_82.
      (822-830).
      
      http://link.springer.com/10.1007/978-3-319-77525-8_82

 251. Gutiérrez C, Hidders J and Wood P. (2019). Graph Data Models. Encyclopedia
      of Big Data Technologies. 10.1007/978-3-319-77525-8_81. (830-835).
      
      http://link.springer.com/10.1007/978-3-319-77525-8_81

 252. Bhattacharyya A, Baldin I, Xin Y and Anyanwu K. (2019). Evaluating
      Generalized Path Queries by Integrating Algebraic Path Problem Solving
      with Graph Pattern Matching. Semantic Systems. The Power of AI and
      Knowledge Graphs. 10.1007/978-3-030-33220-4_8. (101-116).
      
      http://link.springer.com/10.1007/978-3-030-33220-4_8

 253. Qassimi S and Abdelwahed E. (2019). Semantic Graph-Based Recommender
      System. Application in Cultural Heritage. New Trends in Model and Data
      Engineering. 10.1007/978-3-030-32213-7_8. (109-121).
      
      http://link.springer.com/10.1007/978-3-030-32213-7_8

 254. Comyn-Wattiau I and Akoka J. (2019). Query-Based Reverse Engineering of
      Graph Databases – From Program to Model. New Trends in Databases and
      Information Systems. 10.1007/978-3-030-30278-8_22. (188-197).
      
      http://link.springer.com/10.1007/978-3-030-30278-8_22

 255. Vaisman A, Besteiro F and Valverde M. (2019). Modelling and Querying Star
      and Snowflake Warehouses Using Graph Databases. New Trends in Databases
      and Information Systems. 10.1007/978-3-030-30278-8_18. (144-152).
      
      https://link.springer.com/10.1007/978-3-030-30278-8_18

 256. Schneider S, Lambers L and Orejas F. (2019). A Logic-Based Incremental
      Approach to Graph Repair. Fundamental Approaches to Software Engineering.
      10.1007/978-3-030-16722-6_9. (151-167).
      
      http://link.springer.com/10.1007/978-3-030-16722-6_9

 257. Akintoye S, Bagula A, Isafiade O, Djemaiel Y and Boudriga N. (2019). Data
      Model for Cloud Computing Environment. e-Infrastructure and e-Services for
      Developing Countries. 10.1007/978-3-030-16042-5_19. (199-215).
      
      http://link.springer.com/10.1007/978-3-030-16042-5_19

 258. Ramler R, Buchgeher G, Klammer C, Pfeiffer M, Salomon C, Thaller H and
      Linsbauer L. (2019). Benefits and Drawbacks of Representing and Analyzing
      Source Code and Software Engineering Artifacts with Graph Databases.
      Software Quality: The Complexity and Challenges of Software Engineering
      and Software Quality in the Cloud. 10.1007/978-3-030-05767-1_9. (125-148).
      
      http://link.springer.com/10.1007/978-3-030-05767-1_9

 259. JASKIERNY L. (2018). REVIEW OF THE DATA MODELING STANDARDS AND DATA MODEL
      TRANSFORMATION TECHNIQUES. Applied Computer Science. 10.35784/acs-2018-32.
      14:4. (93-108).
      
      https://ph.pollub.pl/index.php/acs/article/view/3268

 260. Lissandrini M, Brugnara M and Velegrakis Y. (2018). Beyond
      macrobenchmarks. Proceedings of the VLDB Endowment. 12:4. (390-403).
      Online publication date: 1-Dec-2018.
      
      https://doi.org/10.14778/3297753.3297759

 261. Musa A, Dehmer M, Yli-Harja O and Emmert-Streib F. (2018). Exploiting
      Genomic Relations in Big Data Repositories by Graph-Based Search Methods.
      Machine Learning and Knowledge Extraction. 10.3390/make1010012. 1:1.
      (205-210).
      
      http://www.mdpi.com/2504-4990/1/1/12

 262. Fortini P and Davis C. Analysis, Integration and Visualization of Urban
      Data From Multiple Heterogeneous Sources. Proceedings of the 1st ACM
      SIGSPATIAL Workshop on Advances on Resilient and Intelligent Cities.
      (17-26).
      
      https://doi.org/10.1145/3284566.3284569

 263. Schneider S, Lambers L and Orejas F. (2018). Automated reasoning for
      attributed graph properties. International Journal on Software Tools for
      Technology Transfer (STTT). 20:6. (705-737). Online publication date:
      1-Nov-2018.
      
      /doi/10.5555/3288063.3288080

 264. Yang C, Feng Y, Li P, Shi Y and Han J. (2018). Meta-Graph Based HIN
      Spectral Embedding: Methods, Analyses, and Insights 2018 IEEE
      International Conference on Data Mining (ICDM). 10.1109/ICDM.2018.00081.
      978-1-5386-9159-5. (657-666).
      
      https://ieeexplore.ieee.org/document/8594890/

 265. Schneider S, Lambers L and Orejas F. (2018). Automated reasoning for
      attributed graph properties. International Journal on Software Tools for
      Technology Transfer. 10.1007/s10009-018-0496-3. 20:6. (705-737). Online
      publication date: 1-Nov-2018.
      
      http://link.springer.com/10.1007/s10009-018-0496-3

 266. Bonifati A, Fletcher G, Voigt H and Yakovets N. (2018). Querying Graphs.
      Synthesis Lectures on Data Management. 10.2200/S00873ED1V01Y201808DTM051.
      10:3. (1-184). Online publication date: 1-Oct-2018.
      
      https://www.morganclaypool.com/doi/10.2200/S00873ED1V01Y201808DTM051

 267. Ayed R. (2018). Social Networks Analysis in a Business Intelligence
      Context 2018 IEEE/ACS 15th International Conference on Computer Systems
      and Applications (AICCSA). 10.1109/AICCSA.2018.8612832. 978-1-5386-9120-5.
      (1-8).
      
      https://ieeexplore.ieee.org/document/8612832/

 268. Castelltort A and Martin T. (2018). Handling scalable approximate queries
      over NoSQL graph databases: Cypherf and the Fuzzy4S framework. Fuzzy Sets
      and Systems. 10.1016/j.fss.2017.08.002. 348. (21-49). Online publication
      date: 1-Oct-2018.
      
      https://linkinghub.elsevier.com/retrieve/pii/S0165011417303093

 269. Mattern H and König M. (2018). BIM-based modeling and management of design
      options at early planning phases. Advanced Engineering Informatics. 38:C.
      (316-329). Online publication date: 1-Oct-2018.
      
      https://doi.org/10.1016/j.aei.2018.08.007

 270. Angles R, Arenas M, Barceló P, Hogan A, Reutter J and Vrgoč D. (2017).
      Foundations of Modern Query Languages for Graph Databases. ACM Computing
      Surveys. 50:5. (1-40). Online publication date: 30-Sep-2018.
      
      https://doi.org/10.1145/3104031

 271. Castelltort A, Laurent A, Pivert O, Slama O and Thion V. (2018). Fuzzy
      Preference Queries to NoSQL Graph Databases. NoSQL Data Models.
      10.1002/9781119528227.ch6. (167-201). Online publication date:
      15-Aug-2018.
      
      https://onlinelibrary.wiley.com/doi/10.1002/9781119528227.ch6

 272. Głuch G, Marcinkowski J and Ostropolski-Nalewaja P. Can One Escape Red
      Chains?. Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
      Computer Science. (492-501).
      
      https://doi.org/10.1145/3209108.3209120

 273. Morgado C, Busichia Baioco G, Basso T and Moraes R. (2018). A Security
      Model for Access Control in Graph-Oriented Databases 2018 IEEE
      International Conference on Software Quality, Reliability and Security
      (QRS). 10.1109/QRS.2018.00027. 978-1-5386-7757-5. (135-142).
      
      https://ieeexplore.ieee.org/document/8424965/

 274. Verginadis Y, Patiniotakis I and Mentzas G. (2018). Metadata Schema for
      Data-Aware Multi-Cloud Computing 2018 Innovations in Intelligent Systems
      and Applications (INISTA). 10.1109/INISTA.2018.8466270. 978-1-5386-5150-6.
      (1-9).
      
      https://ieeexplore.ieee.org/document/8466270/

 275. Mezzanzanica M, Mercorio F, Cesarini M, Moscato V and Picariello A.
      (2018). GraphDBLP. Multimedia Tools and Applications. 77:14.
      (18657-18688). Online publication date: 1-Jul-2018.
      
      https://doi.org/10.1007/s11042-017-5503-2

 276. Mayer C, Mayer R, Grunert J, Rothermel K and Tariq M. Q-graph. Proceedings
      of the 1st ACM SIGMOD Joint International Workshop on Graph Data
      Management Experiences & Systems (GRADES) and Network Data Analytics
      (NDA). (1-10).
      
      https://doi.org/10.1145/3210259.3210265

 277. Biscarini F, Cozzi P and Orozco‐ter Wengel P. (2018). Lessons learnt on
      the analysis of large sequence data in animal genomics. Animal Genetics.
      10.1111/age.12655. 49:3. (147-158). Online publication date: 1-Jun-2018.
      
      https://onlinelibrary.wiley.com/doi/10.1111/age.12655

 278. Liu M, Shang W, Cao J, Pan C, Lin W and Fu H. (2018). The Design and
      Implementation of Script Authoring Assistant System of Film and Television
      Big Data 2018 IEEE/ACIS 17th International Conference on Computer and
      Information Science (ICIS). 10.1109/ICIS.2018.8466381. 978-1-5386-5892-5.
      (579-584).
      
      https://ieeexplore.ieee.org/document/8466381/

 279. Bolla S and Sudhir T. (2018). Pinning Optimal DBDBs for User Delivered
      Sentiments 2018 Second International Conference on Intelligent Computing
      and Control Systems (ICICCS). 10.1109/ICCONS.2018.8662989.
      978-1-5386-2842-3. (899-904).
      
      https://ieeexplore.ieee.org/document/8662989/

 280. Francis N, Green A, Guagliardo P, Libkin L, Lindaaker T, Marsault V,
      Plantikow S, Rydberg M, Selmer P and Taylor A. Cypher. Proceedings of the
      2018 International Conference on Management of Data. (1433-1445).
      
      https://doi.org/10.1145/3183713.3190657

 281. Angles R, Arenas M, Barcelo P, Boncz P, Fletcher G, Gutierrez C, Lindaaker
      T, Paradies M, Plantikow S, Sequeda J, van Rest O and Voigt H. G-CORE.
      Proceedings of the 2018 International Conference on Management of Data.
      (1421-1432).
      
      https://doi.org/10.1145/3183713.3190654

 282. Jamkhedkar P, Johnson T, Kanza Y, Shaikh A, Shankaranarayanan N and
      Shkapenyuk V. A Graph Database for a Virtualized Network Infrastructure.
      Proceedings of the 2018 International Conference on Management of Data.
      (1393-1405).
      
      https://doi.org/10.1145/3183713.3190653

 283. Zou J, Lang B, Zhao J and Zhao Y. Achieving effective and efficient
      attributed graph data management using lucene. Proceedings of the 1st
      International Conference on Big Data Technologies. (7-13).
      
      https://doi.org/10.1145/3226116.3226119

 284. Colaso A, Prieto P, Herrero J, Abad P, Menezo L, Puente V and Gregorio J.
      Memory Hierarchy Characterization of NoSQL Applications through
      Full-System Simulation. IEEE Transactions on Parallel and Distributed
      Systems. 10.1109/TPDS.2017.2787150. 29:5. (1161-1173).
      
      https://ieeexplore.ieee.org/document/8239962/

 285. Kovacs L, Varga E and Balla T. (2018). Efficiency analysis of ontology
      servers 2018 19th International Carpathian Control Conference (ICCC).
      10.1109/CarpathianCC.2018.8399655. 978-1-5386-4762-2. (353-358).
      
      https://ieeexplore.ieee.org/document/8399655/

 286. Hogan A. Profiling Graphs. Companion Proceedings of the The Web Conference
      2018. (1481-1482).
      
      https://doi.org/10.1145/3184558.3191603

 287. Libkin L, Reutter J, Soto A and Vrgoč D. (2018). TriAL. ACM Transactions
      on Database Systems. 43:1. (1-46). Online publication date: 31-Mar-2018.
      
      https://doi.org/10.1145/3154385

 288. Rizvi S and Fong P. Efficient Authorization of Graph Database Queries in
      an Attribute-Supporting ReBAC Model. Proceedings of the Eighth ACM
      Conference on Data and Application Security and Privacy. (204-211).
      
      https://doi.org/10.1145/3176258.3176331

 289. Kostylev E, Reutter J and Vrgoč D. (2018). Containment of queries for
      graphs with data. Journal of Computer and System Sciences.
      10.1016/j.jcss.2017.09.005. 92. (65-91). Online publication date:
      1-Mar-2018.
      
      https://linkinghub.elsevier.com/retrieve/pii/S002200001730137X

 290. Küçükkeçeci C and Yazıcı A. (2018). Big Data Model Simulation on a Graph
      Database for Surveillance in Wireless Multimedia Sensor Networks. Big Data
      Research. 10.1016/j.bdr.2017.09.003. 11. (33-43). Online publication date:
      1-Mar-2018.
      
      https://linkinghub.elsevier.com/retrieve/pii/S2214579617300102

 291. Shen Y, Yuan K, Chen D, Colloc J, Yang M, Li Y and Lei K. (2018). An
      ontology-driven clinical decision support system (IDDAP) for infectious
      disease diagnosis and antibiotic prescription. Artificial Intelligence in
      Medicine. 86:C. (20-32). Online publication date: 1-Mar-2018.
      
      https://doi.org/10.1016/j.artmed.2018.01.003

 292. Ramezanian S, Meskanen T and Niemi V. (2018). Privacy Preserving Queries
      on Directed Graph 2018 9th IFIP International Conference on New
      Technologies, Mobility and Security (NTMS). 10.1109/NTMS.2018.8328714.
      978-1-5386-3662-6. (1-5).
      
      http://ieeexplore.ieee.org/document/8328714/

 293. Parsons J and Lukyanenko R. (2018). Beyond Micro-Tasks. Journal of
      Database Management. 29:1. (1-22). Online publication date: 1-Jan-2018.
      
      https://doi.org/10.4018/JDM.2018010101

 294. Ma X, Beaulieu S, Fu L, Fox P, Di Stefano M and West P. Documenting
      Provenance for Reproducible Marine Ecosystem Assessment in Open Science.
      Information Retrieval and Management. 10.4018/978-1-5225-5191-1.ch045.
      (1051-1077).
      
      http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-5191-1.ch045

 295. Guerreiro S. Challenges of Meta Access Control Model Enforcement to an
      Increased Interoperability. Encyclopedia of Information Science and
      Technology, Fourth Edition. 10.4018/978-1-5225-2255-3.ch056. (651-661).
      
      http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-2255-3.ch056

 296. YANG S, WANG J, SHI L, TAN Y and QIAO F. (2018). Engineering management
      for high-end equipment intelligent manufacturing. Frontiers of Engineering
      Management. 10.15302/J-FEM-2018050. 5:4. (420).
      
      http://engineering.cae.cn/fem/EN/10.15302/J-FEM-2018050

 297. Pienta R, Hohman F, Endert A, Tamersoy A, Roundy K, Gates C, Navathe S and
      Chau D. VIGOR: Interactive Visual Exploration of Graph Query Results. IEEE
      Transactions on Visualization and Computer Graphics.
      10.1109/TVCG.2017.2744898. 24:1. (215-225).
      
      http://ieeexplore.ieee.org/document/8019832/

 298. Poulovassilis A. (2018). Applications of Flexible Querying to Graph Data.
      Graph Data Management. 10.1007/978-3-319-96193-4_4. (97-142).
      
      http://link.springer.com/10.1007/978-3-319-96193-4_4

 299. Angles R and Gutierrez C. (2018). An Introduction to Graph Data
      Management. Graph Data Management. 10.1007/978-3-319-96193-4_1. (1-32).
      
      http://link.springer.com/10.1007/978-3-319-96193-4_1

 300. Villa F, Moreno F and Guzmán J. (2018). An Analysis of a Methodology that
      Transforms the Entity-Relationship Model into a Conceptual Model for a
      Graph Database. Emerging Technologies in Computing.
      10.1007/978-3-319-95450-9_6. (70-83).
      
      http://link.springer.com/10.1007/978-3-319-95450-9_6

 301. Surinx D, Van den Bussche J and Van Gucht D. (2018). A Framework for
      Comparing Query Languages in Their Ability to Express Boolean Queries.
      Foundations of Information and Knowledge Systems.
      10.1007/978-3-319-90050-6_20. (360-378).
      
      http://link.springer.com/10.1007/978-3-319-90050-6_20

 302. Van Erven G, Silva W, Carvalho R and Holanda M. (2018). GRAPHED: A Graph
      Description Diagram for Graph Databases. Trends and Advances in
      Information Systems and Technologies. 10.1007/978-3-319-77703-0_111.
      (1141-1151).
      
      http://link.springer.com/10.1007/978-3-319-77703-0_111

 303. Sędziwy A and Kotulski L. (2018). Using a Multi-agent System for
      Overcoming Flickering Effect in Distributed Large-Scale Customized
      Lighting Design. Intelligent Information and Database Systems.
      10.1007/978-3-319-75417-8_35. (372-381).
      
      https://link.springer.com/10.1007/978-3-319-75417-8_35

 304. Paradies M, Plantikow S and Rest O. (2018). Graph Data Management Systems.
      Encyclopedia of Big Data Technologies. 10.1007/978-3-319-63962-8_82-1.
      (1-9).
      
      http://link.springer.com/10.1007/978-3-319-63962-8_82-1

 305. Gutierrez C, Hidders J and Wood P. (2018). Graph Data Models. Encyclopedia
      of Big Data Technologies. 10.1007/978-3-319-63962-8_81-1. (1-6).
      
      http://link.springer.com/10.1007/978-3-319-63962-8_81-1

 306. Asaad C and Baïna K. (2018). NoSQL Databases – Seek for a Design
      Methodology. Model and Data Engineering. 10.1007/978-3-030-00856-7_2.
      (25-40).
      
      http://link.springer.com/10.1007/978-3-030-00856-7_2

 307. San Martín M and Gutierrez C. (2018). Transforming Social Networks Data.
      Encyclopedia of Social Network Analysis and Mining.
      10.1007/978-1-4939-7131-2_389. (3170-3182).
      
      http://link.springer.com/10.1007/978-1-4939-7131-2_389

 308. Cerinšek M and Batagelj V. (2018). Sources of Network Data. Encyclopedia
      of Social Network Analysis and Mining. 10.1007/978-1-4939-7131-2_313.
      (2843-2851).
      
      http://link.springer.com/10.1007/978-1-4939-7131-2_313

 309. Wood P. (2018). Graph Database. Encyclopedia of Database Systems.
      10.1007/978-1-4614-8265-9_183. (1639-1643).
      
      http://link.springer.com/10.1007/978-1-4614-8265-9_183

 310. Gupta A. (2018). Graph Data Management in Scientific Applications.
      Encyclopedia of Database Systems. 10.1007/978-1-4614-8265-9_1298.
      (1636-1639).
      
      http://link.springer.com/10.1007/978-1-4614-8265-9_1298

 311. Soga K, Casey G, Kumar K and Zhao B. (2017). Briefing: High-performance
      computing for city-scale modelling and simulations. Proceedings of the
      Institution of Civil Engineers - Smart Infrastructure and Construction.
      10.1680/jsmic.17.00026. 170:4. (80-85). Online publication date:
      1-Dec-2017.
      
      https://www.icevirtuallibrary.com/doi/10.1680/jsmic.17.00026

 312. Liu S, Lin G, Chai B, Dai J, Zhou A, Chen F and Pan J. (2017). The future
      of graph database applications: An electric utility perspective 2017 IEEE
      2nd Information Technology, Networking, Electronic and Automation Control
      Conference (ITNEC). 10.1109/ITNEC.2017.8284941. 978-1-5090-6414-4.
      (223-227).
      
      http://ieeexplore.ieee.org/document/8284941/

 313. Chai B, Qiu H, Liu S, Zhang B, Gao K, Zhou A and Chen F. (2017). A study
      of topology analysis engine based on graph databases in electric utilities
      2017 IEEE 2nd Information Technology, Networking, Electronic and
      Automation Control Conference (ITNEC). 10.1109/ITNEC.2017.8284800.
      978-1-5090-6414-4. (585-588).
      
      http://ieeexplore.ieee.org/document/8284800/

 314. Almeida R, da Silva W, Castro K, Walter M, Araujo A, Holanda M and
      Lifschitz S. (2017). AProvBio: An architecture for data provenance in
      bioinformatics workflows using graph database 2017 IEEE International
      Conference on Bioinformatics and Biomedicine (BIBM).
      10.1109/BIBM.2017.8217989. 978-1-5090-3050-7. (2139-2144).
      
      http://ieeexplore.ieee.org/document/8217989/

 315. Zhang Y, Chen R and Chen H. Sub-millisecond Stateful Stream Querying over
      Fast-evolving Linked Data. Proceedings of the 26th Symposium on Operating
      Systems Principles. (614-630).
      
      https://doi.org/10.1145/3132747.3132777

 316. Santisteban J and Ticona-Herrera R. (2017). Modeling a Persistent Graph
      2017 Sixteenth Mexican International Conference on Artificial Intelligence
      (MICAI). 10.1109/MICAI-2017.2017.00011. 978-1-5386-7199-3. (15-22).
      
      https://ieeexplore.ieee.org/document/8575560/

 317. Tang P, Pitera J, Zubarev D and Chawla N. (2017). Materials Science
      Literature-Patent Relevance Search: A Heterogeneous Network Analysis
      Approach 2017 IEEE International Conference on Data Science and Advanced
      Analytics (DSAA). 10.1109/DSAA.2017.8. 978-1-5090-5004-8. (146-154).
      
      http://ieeexplore.ieee.org/document/8259773/

 318. Gutfraind A and Genkin M. (2017). A graph database framework for covert
      network analysis: An application to the Islamic State network in Europe.
      Social Networks. 10.1016/j.socnet.2016.10.004. 51. (178-188). Online
      publication date: 1-Oct-2017.
      
      https://linkinghub.elsevier.com/retrieve/pii/S0378873316302428

 319. Zhu Y, Yan E and Song I. (2017). A natural language interface to a
      graph-based bibliographic information retrieval system. Data & Knowledge
      Engineering. 10.1016/j.datak.2017.06.006. 111. (73-89). Online publication
      date: 1-Sep-2017.
      
      https://linkinghub.elsevier.com/retrieve/pii/S0169023X17302823

 320. Gómez L, Kuijpers B and Vaisman A. Performing OLAP over Graph Data.
      Proceedings of the International Workshop on Real-Time Business
      Intelligence and Analytics. (1-8).
      
      https://doi.org/10.1145/3129292.3129293

 321. Aleithe M, Skowron P, Franczyk B and Sommer B. Data modeling of smart
      urban object networks. Proceedings of the International Conference on Web
      Intelligence. (1104-1109).
      
      https://doi.org/10.1145/3106426.3117759

 322. Krleža D and Fertalj K. (2017). Graph Matching Using Hierarchical Fuzzy
      Graph Neural Networks. IEEE Transactions on Fuzzy Systems. 25:4.
      (892-904). Online publication date: 1-Aug-2017.
      
      https://doi.org/10.1109/TFUZZ.2016.2586962

 323. Hall R, Murray C and Verdonk M. (2017). The Fragment Network: A Chemistry
      Recommendation Engine Built Using a Graph Database. Journal of Medicinal
      Chemistry. 10.1021/acs.jmedchem.7b00809. 60:14. (6440-6450). Online
      publication date: 27-Jul-2017.
      
      https://pubs.acs.org/doi/10.1021/acs.jmedchem.7b00809

 324. Rigaux P and Thion V. Quality Awareness over Graph Pattern Queries.
      Proceedings of the 21st International Database Engineering & Applications
      Symposium. (90-97).
      
      https://doi.org/10.1145/3105831.3105871

 325. D'Onofrio S, Wehrle M, Portmann E and Myrach T. Striving for semantic
      convergence with fuzzy cognitive maps and graph databases. 2017 IEEE
      International Conference on Fuzzy Systems (FUZZ-IEEE). (1-6).
      
      https://doi.org/10.1109/FUZZ-IEEE.2017.8015657

 326. Baier J, Daroch D, Reutter J and Vrgoč D. Evaluating Navigational RDF
      Queries over the Web. Proceedings of the 28th ACM Conference on Hypertext
      and Social Media. (165-174).
      
      https://doi.org/10.1145/3078714.3078731

 327. Schulz H, Nocke T, Heitzler M and Schumann H. (2016). A systematic view on
      data descriptors for the visual analysis of tabular data. Information
      Visualization. 10.1177/1473871616667767. 16:3. (232-256). Online
      publication date: 1-Jul-2017.
      
      http://journals.sagepub.com/doi/10.1177/1473871616667767

 328. Ravikumar G and Khaparde S. A Common Information Model Oriented Graph
      Database Framework for Power Systems. IEEE Transactions on Power Systems.
      10.1109/TPWRS.2016.2631242. 32:4. (2560-2569).
      
      http://ieeexplore.ieee.org/document/7752988/

 329. Lin X, Peng Y, Choi B and Xu J. (2017). Human-Powered Data Cleaning for
      Probabilistic Reachability Queries on Uncertain Graphs. IEEE Transactions
      on Knowledge and Data Engineering. 29:7. (1452-1465). Online publication
      date: 1-Jul-2017.
      
      https://doi.org/10.1109/TKDE.2017.2684166

 330. Pasquier T, Singh J, Eyers D and Bacon J. Camflow: Managed Data-Sharing
      for Cloud Services. IEEE Transactions on Cloud Computing.
      10.1109/TCC.2015.2489211. 5:3. (472-484).
      
      http://ieeexplore.ieee.org/document/7295590/

 331. Paradies M and Voigt H. (2017). Big Graph Data Analytics on Single
      Machines – An Overview. Datenbank-Spektrum. 10.1007/s13222-017-0255-8.
      17:2. (101-112). Online publication date: 1-Jul-2017.
      
      http://link.springer.com/10.1007/s13222-017-0255-8

 332. Meyer H, Schering A and Heuer A. (2017). The Hydra.PowerGraph System.
      Datenbank-Spektrum. 10.1007/s13222-017-0253-x. 17:2. (113-129). Online
      publication date: 1-Jul-2017.
      
      http://link.springer.com/10.1007/s13222-017-0253-x

 333. Reutter J, Romero M and Vardi M. (2017). Regular Queries on Graph
      Databases. Theory of Computing Systems. 61:1. (31-83). Online publication
      date: 1-Jul-2017.
      
      https://doi.org/10.1007/s00224-016-9676-2

 334. De Virgilio R. Smart RDF Data storage in Graph Databases. Proceedings of
      the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
      Computing. (872-881).
      
      https://doi.org/10.1109/CCGRID.2017.108

 335. Jamkhedkar P, Johnson T, Kanza Y, Shaikh A, Shankarnarayanan N, Shkapenyuk
      V and Woodhull G. Virtualized Network Service Topology Exploration Using
      Nepal. Proceedings of the 2017 ACM International Conference on Management
      of Data. (1611-1614).
      
      https://doi.org/10.1145/3035918.3058733

 336. Xirogiannopoulos K and Deshpande A. Extracting and Analyzing Hidden Graphs
      from Relational Databases. Proceedings of the 2017 ACM International
      Conference on Management of Data. (897-912).
      
      https://doi.org/10.1145/3035918.3035949

 337. Francis N and Libkin L. Schema Mappings for Data Graphs. Proceedings of
      the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
      Systems. (389-401).
      
      https://doi.org/10.1145/3034786.3056113

 338. Akintoye S, Bagula A, Djemaiel Y and Boudriga N. (2017). Lightweight cloud
      computing for development: A graph based data model 2017 IST-Africa Week
      Conference (IST-Africa). 10.23919/ISTAFRICA.2017.8102365. . (1-14).
      
      http://ieeexplore.ieee.org/document/8102365/

 339. Tripathi G, Sharma B and Rajvanshi S. (2017). A combination of Internet of
      Things (IoT) and graph database for future battlefield systems 2017
      International Conference on Computing, Communication and Automation
      (ICCCA). 10.1109/CCAA.2017.8230010. 978-1-5090-6471-7. (1252-1257).
      
      http://ieeexplore.ieee.org/document/8230010/

 340. Barceló P and Muñoz P. (2017). Graph Logics with Rational Relations. ACM
      Transactions on Computational Logic. 18:2. (1-41). Online publication
      date: 30-Apr-2017.
      
      https://doi.org/10.1145/3070822

 341. Zhang X. On the Primitivity of SPARQL 1.1 Operators. Proceedings of the
      26th International Conference on World Wide Web Companion. (875-876).
      
      https://doi.org/10.1145/3041021.3054260

 342. Niewiadomski A, Penczek W, Skaruz J, Szreter M and Prola A. (2017).
      Combining ontology reductions with new approaches to automated abstract
      planning of Planics. Applied Soft Computing. 53:C. (352-379). Online
      publication date: 1-Apr-2017.
      
      https://doi.org/10.1016/j.asoc.2017.01.007

 343. Barakat O, Koll D and Fu X. (2017). Gavel: Software-defined network
      control with graph databases 2017 20th Conference on Innovations in
      Clouds, Internet and Networks (ICIN). 10.1109/ICIN.2017.7899425.
      978-1-5090-3672-1. (279-286).
      
      http://ieeexplore.ieee.org/document/7899425/

 344. Zhu Y, Yan E and Song I. (2017). The use of a graph-based system to
      improve bibliographic information retrieval. Journal of the Association
      for Information Science and Technology. 68:2. (480-490). Online
      publication date: 1-Feb-2017.
      
      https://doi.org/10.1002/asi.23677

 345. Yoon B, Kim S and Kim S. (2017). Use of Graph Database for the Integration
      of Heterogeneous Biological Data. Genomics & Informatics.
      10.5808/GI.2017.15.1.19. 15:1. (19).
      
      http://genominfo.org/journal/view.php?doi=10.5808/GI.2017.15.1.19

 346. Lampoltshammer T, Guadamuz A, Wass C and Heistracher T. Openlaws.eu.
      Achieving Open Justice through Citizen Participation and Transparency.
      10.4018/978-1-5225-0717-8.ch009. (173-190).
      
      http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-0717-8.ch009

 347. Ma X, Beaulieu S, Fu L, Fox P, Di Stefano M and West P. Documenting
      Provenance for Reproducible Marine Ecosystem Assessment in Open Science.
      Oceanographic and Marine Cross-Domain Data Management for Sustainable
      Development. 10.4018/978-1-5225-0700-0.ch005. (100-126).
      
      http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-0700-0.ch005

 348. SCHULTZ P and WISNESKY R. (2017). Algebraic data integration. Journal of
      Functional Programming. 10.1017/S0956796817000168. 27.
      
      https://www.cambridge.org/core/product/identifier/S0956796817000168/type/journal_article

 349. Tuteja S and Kumar R. (2017). A System Architecture for Mapping
      Application Data into Complex Graph. Information, Communication and
      Computing Technology. 10.1007/978-981-10-6544-6_15. (148-155).
      
      http://link.springer.com/10.1007/978-981-10-6544-6_15

 350. Jimenez S and Dueñas G. (2017). G-WordNet: Moving WordNet 3.0 and Its
      Resources to a Graph Database. Advances in Computing.
      10.1007/978-3-319-66562-7_8. (100-114).
      
      http://link.springer.com/10.1007/978-3-319-66562-7_8

 351. Manica E, Dorneles C and Galante R. (2017). Orion: A Cypher-Based Web Data
      Extractor. Database and Expert Systems Applications.
      10.1007/978-3-319-64468-4_21. (275-289).
      
      https://link.springer.com/10.1007/978-3-319-64468-4_21

 352. Furtado P. (2017). Scalability and Realtime on Big Data, MapReduce, NoSQL
      and Spark. Business Intelligence. 10.1007/978-3-319-61164-8_4. (79-104).
      
      http://link.springer.com/10.1007/978-3-319-61164-8_4

 353. Voigt H. (2017). Declarative Multidimensional Graph Queries. Business
      Intelligence. 10.1007/978-3-319-61164-8_1. (1-37).
      
      http://link.springer.com/10.1007/978-3-319-61164-8_1

 354. Lebedev A, Lee J, Rivera V and Mazzara M. (2017). Link Prediction Using
      Top-k Shortest Distances. Data Analytics. 10.1007/978-3-319-60795-5_10.
      (101-105).
      
      https://link.springer.com/10.1007/978-3-319-60795-5_10

 355. Zhou F, Xu Z, Li Y, Xu J and Peng S. (2017). Private Graph Intersection
      Protocol. Information Security and Privacy. 10.1007/978-3-319-59870-3_13.
      (235-248).
      
      http://link.springer.com/10.1007/978-3-319-59870-3_13

 356. Goz F and Mutlu A. (2017). Concept Discovery in Graph Databases. Hybrid
      Artificial Intelligent Systems. 10.1007/978-3-319-59650-1_6. (63-74).
      
      http://link.springer.com/10.1007/978-3-319-59650-1_6

 357. Lombardi T. (2017). Macroanalysis in the Arts and Sciences. New Directions
      for Computing Education. 10.1007/978-3-319-54226-3_6. (87-100).
      
      http://link.springer.com/10.1007/978-3-319-54226-3_6

 358. Akid H and Ben Ayed M. (2017). Towards NoSQL Graph Data Warehouse for Big
      Social Data Analysis. Intelligent Systems Design and Applications.
      10.1007/978-3-319-53480-0_95. (965-973).
      
      http://link.springer.com/10.1007/978-3-319-53480-0_95

 359. Reutter J and Vrgoč D. (2017). Navigational and Rule-Based Languages for
      Graph Databases. Reasoning Web: Logical Foundation of Knowledge Graph
      Construction and Query Answering. 10.1007/978-3-319-49493-7_3. (90-123).
      
      https://link.springer.com/10.1007/978-3-319-49493-7_3

 360. Khan A and Ranu S. (2017). Big-Graphs: Querying, Mining, and Beyond.
      Handbook of Big Data Technologies. 10.1007/978-3-319-49340-4_16.
      (531-582).
      
      http://link.springer.com/10.1007/978-3-319-49340-4_16

 361. Junghanns M, Petermann A, Neumann M and Rahm E. (2017). Management and
      Analysis of Big Graph Data: Current Systems and Open Challenges. Handbook
      of Big Data Technologies. 10.1007/978-3-319-49340-4_14. (457-505).
      
      http://link.springer.com/10.1007/978-3-319-49340-4_14

 362. Küçükkeçeci C and Yazıcı A. (2017). A Graph-Based Big Data Model for
      Wireless Multimedia Sensor Networks. Advances in Big Data.
      10.1007/978-3-319-47898-2_22. (205-215).
      
      https://link.springer.com/10.1007/978-3-319-47898-2_22

 363. Shvorob I. (2017). New Approach for Saving Semistructured Medical Data.
      Advances in Intelligent Systems and Computing.
      10.1007/978-3-319-45991-2_3. (29-40).
      
      http://link.springer.com/10.1007/978-3-319-45991-2_3

 364. Wood P. (2017). Graph Database. Encyclopedia of Database Systems.
      10.1007/978-1-4899-7993-3_183-2. (1-4).
      
      http://link.springer.com/10.1007/978-1-4899-7993-3_183-2

 365. Gupta A. (2017). Graph Data Management in Scientific Applications.
      Encyclopedia of Database Systems. 10.1007/978-1-4899-7993-3_1298-2. (1-4).
      
      http://link.springer.com/10.1007/978-1-4899-7993-3_1298-2

 366. San Martín M and Gutierrez C. (2017). Transforming Social Networks Data.
      Encyclopedia of Social Network Analysis and Mining.
      10.1007/978-1-4614-7163-9_389-1. (1-13).
      
      http://link.springer.com/10.1007/978-1-4614-7163-9_389-1

 367. Cerinšek M and Batagelj V. (2017). Sources of Network Data. Encyclopedia
      of Social Network Analysis and Mining. 10.1007/978-1-4614-7163-9_313-1.
      (1-9).
      
      http://link.springer.com/10.1007/978-1-4614-7163-9_313-1

 368. Ueta K, Xue X, Nakamoto Y and Murakami S. (2016). A Distributed Graph
      Database for the Data Management of IoT Systems 2016 IEEE International
      Conference on Internet of Things (iThings) and IEEE Green Computing and
      Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
      (CPSCom) and IEEE Smart Data (SmartData).
      10.1109/iThings-GreenCom-CPSCom-SmartData.2016.74. 978-1-5090-5880-8.
      (299-304).
      
      http://ieeexplore.ieee.org/document/7917102/

 369. Castelltort A and Laurent A. (2016). Rogue behavior detection in NoSQL
      graph databases. Journal of Innovation in Digital Ecosystems.
      10.1016/j.jides.2016.10.004. 3:2. (70-82). Online publication date:
      1-Dec-2016.
      
      https://linkinghub.elsevier.com/retrieve/pii/S2352664516300177

 370. Kuzmin K, Lu X, Mukherjee P, Zhuang J, Gaiteri C and Szymanski B. (2016).
      Supporting novel biomedical research via multilayer collaboration
      networks. Applied Network Science. 10.1007/s41109-016-0015-y. 1:1. Online
      publication date: 1-Dec-2016.
      
      https://appliednetsci.springeropen.com/articles/10.1007/s41109-016-0015-y

 371. Emmanuel I and Stanier C. Defining Big Data. Proceedings of the
      International Conference on Big Data and Advanced Wireless Technologies.
      (1-6).
      
      https://doi.org/10.1145/3010089.3010090

 372. Zhang X, Feng Z, Wang X, Rao G and Wu W. Context-Free Path Queries on RDF
      Graphs. The Semantic Web – ISWC 2016. (632-648).
      
      https://doi.org/10.1007/978-3-319-46523-4_38

 373. (2016). Approximation and relaxation of semantic web path queries. Web
      Semantics: Science, Services and Agents on the World Wide Web. 40:C.
      (1-21). Online publication date: 1-Oct-2016.
      
      https://doi.org/10.1016/j.websem.2016.08.001

 374. Dai D, Carns P, Ross R, Jenkins J, Muirhead N and Chen Y. (2016). An
      asynchronous traversal engine for graph-based rich metadata management.
      Parallel Computing. 58:C. (140-156). Online publication date: 1-Oct-2016.
      
      https://doi.org/10.1016/j.parco.2016.06.002

 375. Fionda V, Gutierrez C and Pirrò G. (2016). Building knowledge maps of Web
      graphs. Artificial Intelligence. 239:C. (143-167). Online publication
      date: 1-Oct-2016.
      
      https://doi.org/10.1016/j.artint.2016.07.003

 376. Weale T, Gadepally V, Hutchison D and Kepner J. (2016). Benchmarking the
      graphulo processing framework 2016 IEEE High Performance Extreme Computing
      Conference (HPEC). 10.1109/HPEC.2016.7761640. 978-1-5090-3525-0. (1-5).
      
      http://ieeexplore.ieee.org/document/7761640/

 377. Ma Z, Capretz M and Yan L. (2016). Storing massive Resource Description
      Framework (RDF) data: a survey. The Knowledge Engineering Review.
      10.1017/S0269888916000217. 31:4. (391-413). Online publication date:
      1-Sep-2016.
      
      https://www.cambridge.org/core/product/identifier/S0269888916000217/type/journal_article

 378. Ravve E. (2016). Incremental computations over strongly distributed
      databases. Concurrency and Computation: Practice & Experience. 28:11.
      (3061-3076). Online publication date: 10-Aug-2016.
      
      https://doi.org/10.1002/cpe.3597

 379. Kahng M, Navathe S, Stasko J and Chau D. (2016). Interactive browsing and
      navigation in relational databases. Proceedings of the VLDB Endowment.
      9:12. (1017-1028). Online publication date: 1-Aug-2016.
      
      https://doi.org/10.14778/2994509.2994520

 380. Zhang H, Lu F and Xu J. (2016). Modeling and Querying Moving Objects with
      Social Relationships. ISPRS International Journal of Geo-Information.
      10.3390/ijgi5070121. 5:7. (121).
      
      http://www.mdpi.com/2220-9964/5/7/121

 381. Pokorný J. Conceptual and Database Modelling of Graph Databases.
      Proceedings of the 20th International Database Engineering & Applications
      Symposium. (370-377).
      
      https://doi.org/10.1145/2938503.2938547

 382. Grabon M, Michaliszyn J, Otop J and Wieczorek P. Querying data graphs with
      arithmetical regular expressions. Proceedings of the Twenty-Fifth
      International Joint Conference on Artificial Intelligence. (1088-1094).
      
      /doi/10.5555/3060621.3060772

 383. Johnson T, Kanza Y, Lakshmanan L and Shkapenyuk V. Nepal. Proceedings of
      the 1st ACM SIGMOD Workshop on Network Data Analytics. (1-8).
      
      https://doi.org/10.1145/2980523.2980530

 384. Junghanns M, Petermann A, Teichmann N, Gómez K and Rahm E. Analyzing
      extended property graphs with Apache Flink. Proceedings of the 1st ACM
      SIGMOD Workshop on Network Data Analytics. (1-8).
      
      https://doi.org/10.1145/2980523.2980527

 385. Zellweger H. (2016). Tree Visualizations in Structured Data Recursively
      Defined by the Aleph Data Relation 2016 20th International Conference
      Information Visualisation (IV). 10.1109/IV.2016.75. 978-1-4673-8942-6.
      (21-26).
      
      http://ieeexplore.ieee.org/document/7557898/

 386. Ben Ammar A. (2016). Graph database partitioning: A study 2016 7th
      International Conference on Information, Intelligence, Systems &
      Applications (IISA). 10.1109/IISA.2016.7785355. 978-1-5090-3429-1. (1-9).
      
      http://ieeexplore.ieee.org/document/7785355/

 387. Shang Z, Li F, Yu J, Zhang Z and Cheng H. Graph Analytics Through
      Fine-Grained Parallelism. Proceedings of the 2016 International Conference
      on Management of Data. (463-478).
      
      https://doi.org/10.1145/2882903.2915238

 388. Cohen S. Data Management for Social Networking. Proceedings of the 35th
      ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems.
      (165-177).
      
      https://doi.org/10.1145/2902251.2902306

 389. Benzi K, Ricaud B and Vandergheynst P. Principal Patterns on Graphs:
      Discovering Coherent Structures in Datasets. IEEE Transactions on Signal
      and Information Processing over Networks. 10.1109/TSIPN.2016.2524500. 2:2.
      (160-173).
      
      http://ieeexplore.ieee.org/document/7398168/

 390. Mohan A, Ebrahimi M, Lu S and Kotov A. (2016). A NoSQL Data Model for
      Scalable Big Data Workflow Execution 2016 IEEE International Congress on
      Big Data (BigData Congress). 10.1109/BigDataCongress.2016.15.
      978-1-5090-2622-7. (52-59).
      
      http://ieeexplore.ieee.org/document/7584920/

 391. Abdelhamid S, Kuhlman C, Marathe M and Ravi S. (2016). Network Services
      and Their Compositions for Network Science Applications. Procedia Computer
      Science. 80:C. (472-483). Online publication date: 1-Jun-2016.
      
      https://doi.org/10.1016/j.procs.2016.05.326

 392. Sharma S. (2016). Expanded cloud plumes hiding Big Data ecosystem. Future
      Generation Computer Systems. 59:C. (63-92). Online publication date:
      1-Jun-2016.
      
      https://doi.org/10.1016/j.future.2016.01.003

 393. Libkin L, Martens W and Vrgoč D. (2016). Querying Graphs with Data.
      Journal of the ACM. 63:2. (1-53). Online publication date: 4-May-2016.
      
      https://doi.org/10.1145/2850413

 394. Gadepally V, Kepner J and Reuther A. (2016). Storage and Database
      Management for Big Data. Big Data. 10.1201/b19694-4. (15-41). Online
      publication date: 3-May-2016.
      
      http://www.crcnetbase.com/doi/10.1201/b19694-4

 395. Raji P and Surendran S. (2016). RDF approach on social network analysis
      2016 International Conference on Research Advances in Integrated
      Navigation Systems (RAINS). 10.1109/RAINS.2016.7764416. 978-1-5090-1111-7.
      (1-4).
      
      http://ieeexplore.ieee.org/document/7764416/

 396. Chavarria-Miranda D, Castellana V, Morari A, Haglin D and Feo J. (2016).
      GraQL: A Query Language for High-Performance Attributed Graph Databases
      2016 IEEE International Parallel and Distributed Processing Symposium
      Workshops (IPDPSW). 10.1109/IPDPSW.2016.216. 978-1-5090-3682-0.
      (1453-1462).
      
      http://ieeexplore.ieee.org/document/7530036/

 397. Singh K and Singh V. (2016). Answering graph pattern query using
      incremental views 2016 International Conference on Computing,
      Communication and Automation (ICCCA). 10.1109/CCAA.2016.7813689.
      978-1-5090-1666-2. (54-59).
      
      http://ieeexplore.ieee.org/document/7813689/

 398. Ramesh D, Sinha A and Singh S. (2016). Data modelling for discrete time
      series data using Cassandra and MongoDB 2016 3rd International Conference
      on Recent Advances in Information Technology (RAIT).
      10.1109/RAIT.2016.7507966. 978-1-4799-8579-1. (598-601).
      
      http://ieeexplore.ieee.org/document/7507966/

 399. Daltio J and Medeiros C. (2016). A View Handler for Semantic Graphs 2016
      IEEE Tenth International Conference on Semantic Computing (ICSC).
      10.1109/ICSC.2016.32. 978-1-5090-0662-5. (238-241).
      
      http://ieeexplore.ieee.org/document/7439339/

 400. Inoue T, Iwashita H, Kawahara J and Minato S. (2016). Graphillion.
      International Journal on Software Tools for Technology Transfer (STTT).
      18:1. (57-66). Online publication date: 1-Feb-2016.
      
      https://doi.org/10.1007/s10009-014-0352-z

 401. Orel O, Zakošek S and Baranovič M. (2017). Property Oriented
      Relational-To-Graph Database Conversion. Automatika.
      10.7305/automatika.2017.02.1581. 57:3. (836-845). Online publication date:
      1-Jan-2016.
      
      https://www.tandfonline.com/doi/full/10.7305/automatika.2017.02.1581

 402. Barceló P, Romero M and Vardi M. (2016). Semantic Acyclicity on Graph
      Databases. SIAM Journal on Computing. 10.1137/15M1034714. 45:4.
      (1339-1376). Online publication date: 1-Jan-2016.
      
      http://epubs.siam.org/doi/10.1137/15M1034714

 403. Singh K and Singh V. (2016). MoVie: A scalable algorithm for answering
      graph pattern query using incremental views 2016 Fourth International
      Conference on Parallel, Distributed and Grid Computing (PDGC).
      10.1109/PDGC.2016.7913116. 978-1-5090-3669-1. (61-66).
      
      http://ieeexplore.ieee.org/document/7913116/

 404. Patel A and Dharwa J. (2016). An integrated hybrid recommendation model
      using graph database 2016 International Conference on ICT in Business
      Industry & Government (ICTBIG). 10.1109/ICTBIG.2016.7892680.
      978-1-5090-5515-9. (1-5).
      
      http://ieeexplore.ieee.org/document/7892680/

 405. Noel S, Harley E, Tam K, Limiero M and Share M. (2016). CyGraph. Cognitive
      Computing: Theory and Applications. 10.1016/bs.host.2016.07.001.
      (117-167).
      
      https://linkinghub.elsevier.com/retrieve/pii/S0169716116300426

 406. Zhai X, Pan H, Xie X, Zhang Z and Han Q. (2016). Storage and Parallel
      Loading System Based on Mode Network for Multimode Medical Image Data.
      Social Computing. 10.1007/978-981-10-2098-8_25. (211-216).
      
      http://link.springer.com/10.1007/978-981-10-2098-8_25

 407. He X and Yang B. (2016). An Improved Keyword Search on Big Data Graph with
      Graphics Processors. Computational Intelligence and Intelligent Systems.
      10.1007/978-981-10-0356-1_41. (390-397).
      
      http://link.springer.com/10.1007/978-981-10-0356-1_41

 408. Meier A and Kaufmann M. (2016). NoSQL-Datenbanken. SQL- &
      NoSQL-Datenbanken. 10.1007/978-3-662-47664-2_7. (221-240).
      
      http://link.springer.com/10.1007/978-3-662-47664-2_7

 409. Cignoni G and Cossu G. (2016). The Global Virtual Museum of Information
      Science & Technology, a Project Idea. International Communities of
      Invention and Innovation. 10.1007/978-3-319-49463-0_7. (101-114).
      
      http://link.springer.com/10.1007/978-3-319-49463-0_7

 410. Dang M and Nguyen T. (2016). Using Graph Database for Evidence Correlation
      on Android Smartphones. Future Data and Security Engineering.
      10.1007/978-3-319-48057-2_15. (209-216).
      
      http://link.springer.com/10.1007/978-3-319-48057-2_15

 411. Kaufmann M, Waldis A, Siegfried P, Wilke G, Portmann E and Hemmje M.
      (2016). Intuitive Knowledge Connectivity: Design and Prototyping of
      Cross-Platform Knowledge Networks. Knowledge Science, Engineering and
      Management. 10.1007/978-3-319-47650-6_27. (337-348).
      
      http://link.springer.com/10.1007/978-3-319-47650-6_27

 412. Sayah T, Coquery E, Thion R and Hacid M. (2016). Access Control
      Enforcement for Selective Disclosure of Linked Data. Security and Trust
      Management. 10.1007/978-3-319-46598-2_4. (47-63).
      
      http://link.springer.com/10.1007/978-3-319-46598-2_4

 413. Warnke T and Uhrmacher A. (2016). Spatiotemporal Pattern Matching in
      RoboCup. Multiagent System Technologies. 10.1007/978-3-319-45889-2_7.
      (89-104).
      
      http://link.springer.com/10.1007/978-3-319-45889-2_7

 414. Pivert O, Slama O and Thion V. (2016). Fuzzy Quantified Structural Queries
      to Fuzzy Graph Databases. Scalable Uncertainty Management.
      10.1007/978-3-319-45856-4_18. (260-273).
      
      http://link.springer.com/10.1007/978-3-319-45856-4_18

 415. Spyratos N and Sugibuchi T. (2016). PROPER - A Graph Data Model Based on
      Property Graphs. Information Search, Integration, and Personalization.
      10.1007/978-3-319-43862-7_2. (23-45).
      
      http://link.springer.com/10.1007/978-3-319-43862-7_2

 416. Laurent D. (2016). On Monotonic Deductive Database Updating Under the Open
      World Assumption. Information Search, Integration, and Personalization.
      10.1007/978-3-319-43862-7_1. (3-22).
      
      http://link.springer.com/10.1007/978-3-319-43862-7_1

 417. Zhang H, Lu F and Chen J. (2016). A Geo-Social Data Model for Moving
      Objects. Data Mining and Big Data. 10.1007/978-3-319-40973-3_11.
      (115-122).
      
      http://link.springer.com/10.1007/978-3-319-40973-3_11

 418. Strobin L and Niewiadomski A. (2016). Integration of Multiple Graph
      Datasets and Their Linguistic Summaries: An Application to Linked Data.
      Artificial Intelligence and Soft Computing. 10.1007/978-3-319-39378-0_29.
      (333-343).
      
      http://link.springer.com/10.1007/978-3-319-39378-0_29

 419. Castelltort A and Laurent A. (2016). Extracting Fuzzy Summaries from NoSQL
      Graph Databases. Flexible Query Answering Systems 2015.
      10.1007/978-3-319-26154-6_15. (189-200).
      
      http://link.springer.com/10.1007/978-3-319-26154-6_15

 420. Di Mascio T, Gobbo F and Tarantino L. (2016). Requirements and Open Issues
      for ISs Supporting Dynamic Community Bonding in Emergency Situations.
      Empowering Organizations. 10.1007/978-3-319-23784-8_20. (257-271).
      
      https://link.springer.com/10.1007/978-3-319-23784-8_20

 421. Wang S, Jin J, Rivett P and Kitazawa A. (2015). Technical Survey Graph
      Databases and Applications . International Journal of Semantic Computing.
      10.1142/S1793351X15500129. 09:04. (523-545). Online publication date:
      1-Dec-2015.
      
      http://www.worldscientific.com/doi/abs/10.1142/S1793351X15500129

 422. Pääkkönen P and Pakkala D. (2015). Reference Architecture and
      Classification of Technologies, Products and Services for Big Data
      Systems. Big Data Research. 2:4. (166-186). Online publication date:
      1-Dec-2015.
      
      https://doi.org/10.1016/j.bdr.2015.01.001

 423. Cañas C, Pacheco E, Kemme B, Kienzle J and Jacobsen H. GraPS. Proceedings
      of the 16th Annual Middleware Conference. (1-12).
      
      https://doi.org/10.1145/2814576.2814812

 424. Makris C and Theodoridis E. (2015). Computational Methods for Modeling
      Biological Interaction Networks. Pattern Recognition in Computational
      Molecular Biology. 10.1002/9781119078845.ch26. (505-524). Online
      publication date: 19-Nov-2015.
      
      https://onlinelibrary.wiley.com/doi/10.1002/9781119078845.ch26

 425. Libkin L, Tan T and Vrgoč D. (2015). Regular expressions for data words.
      Journal of Computer and System Sciences. 81:7. (1278-1297). Online
      publication date: 1-Nov-2015.
      
      https://doi.org/10.1016/j.jcss.2015.03.005

 426. Rodriguez M. The Gremlin graph traversal machine and language (invited
      talk). Proceedings of the 15th Symposium on Database Programming
      Languages. (1-10).
      
      https://doi.org/10.1145/2815072.2815073

 427. George K and Mathew T. Big database stores a review on various big data
      datastores. Proceedings of the 2015 International Conference on Green
      Computing and Internet of Things (ICGCIoT). (567-573).
      
      https://doi.org/10.1109/ICGCIoT.2015.7380529

 428. Islam M, Chengfei Liu and Jianxin Li . (2015). Efficient Answering of
      Why-Not Questions in Similar Graph Matching. IEEE Transactions on
      Knowledge and Data Engineering. 27:10. (2672-2686). Online publication
      date: 1-Oct-2015.
      
      https://doi.org/10.1109/TKDE.2015.2432798

 429. Surinx D, Fletcher G, Gyssens M, Leinders D, Van den Bussche J, Van Gucht
      D, Vansummeren S and Wu Y. (2015). Relative expressive power of
      navigational querying on graphs using transitive closure. Logic Journal of
      IGPL. 10.1093/jigpal/jzv028. 23:5. (759-788). Online publication date:
      1-Oct-2015.
      
      https://academic.oup.com/jigpal/article-lookup/doi/10.1093/jigpal/jzv028

 430. Kendea M, Gkantouna V, Rapti A, Sioutas S, Tzimas G and Tsolis D. Graph
      DBs vs. Column-Oriented Stores. Revised Selected Papers of the First
      International Workshop on Algorithmic Aspects of Cloud Computing - Volume
      9511. (62-74).
      
      https://doi.org/10.1007/978-3-319-29919-8_5

 431. Dai D, Carns P, Ross R, Jenkins J, Blauer K and Chen Y. GraphTrek.
      Proceedings of the 2015 IEEE International Conference on Cluster
      Computing. (284-293).
      
      https://doi.org/10.1109/CLUSTER.2015.48

 432. Pabón M and Collazos C. A Visual Query Language for Data Graphs.
      Proceedings of the XVI International Conference on Human Computer
      Interaction. (1-2).
      
      https://doi.org/10.1145/2829875.2829918

 433. Ravikumar G and Khaparde S. (2015). CIM oriented graph database for
      network topology processing and applications integration 2015 50th
      International Universities Power Engineering Conference (UPEC).
      10.1109/UPEC.2015.7339843. 978-1-4673-9682-0. (1-7).
      
      http://ieeexplore.ieee.org/document/7339843/

 434. Bronselaer A, Van Britsom D and De Tré G. (2015). Pointwise multi-valued
      fusion. Information Fusion. 25:C. (121-133). Online publication date:
      1-Sep-2015.
      
      https://doi.org/10.1016/j.inffus.2014.10.001

 435. Cavoto P, Cardoso V, Lebbe R and Santanchè A. FishGraph. Proceedings of
      the 2015 IEEE 11th International Conference on e-Science. (177-186).
      
      https://doi.org/10.1109/eScience.2015.61

 436. Roughan M and Tuke J. The Hitchhikers Guide to Sharing Graph Data.
      Proceedings of the 2015 3rd International Conference on Future Internet of
      Things and Cloud. (435-442).
      
      https://doi.org/10.1109/FiCloud.2015.76

 437. Nakamoto Y. (2015). Exploring a Uniform Framework for a Mobile
      Collaborative Work Support Platform 2015 IEEE 12th Intl Conf on Ubiquitous
      Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and
      Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and
      Communications and Its Associated Workshops (UIC-ATC-ScalCom).
      10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.109. 978-1-4673-7211-4. (537-542).
      
      http://ieeexplore.ieee.org/document/7518288/

 438. Pivert O, Smits G and Thion V. (2015). Expression and efficient processing
      of fuzzy queries in a graph database context 2015 IEEE International
      Conference on Fuzzy Systems (FUZZ-IEEE). 10.1109/FUZZ-IEEE.2015.7337849.
      978-1-4673-7428-6. (1-8).
      
      http://ieeexplore.ieee.org/document/7337849/

 439. Figueira D and Libkin L. (2015). Synchronizing Relations on Words. Theory
      of Computing Systems. 57:2. (287-318). Online publication date:
      1-Aug-2015.
      
      https://doi.org/10.1007/s00224-014-9584-2

 440. Lampoltshammer T and Wiegand S. (2015). Improving the Computational
      Performance of Ontology-Based Classification Using Graph Databases. Remote
      Sensing. 10.3390/rs70709473. 7:7. (9473-9491).
      
      http://www.mdpi.com/2072-4292/7/7/9473

 441. Dehghani R and Ramsin R. (2015). Methodologies for developing knowledge
      management systems: an evaluation framework. Journal of Knowledge
      Management. 10.1108/JKM-10-2014-0438. 19:4. (682-710). Online publication
      date: 13-Jul-2015.
      
      http://www.emeraldinsight.com/doi/10.1108/JKM-10-2014-0438

 442. Figueira D and Libkin L. Path Logics for Querying Graphs. Proceedings of
      the 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science
      (LICS). (329-340).
      
      https://doi.org/10.1109/LICS.2015.39

 443. Abay N, Mutlu A and Karagoz P. (2015). A path-finding based method for
      concept discovery in graphs 2015 6th International Conference on
      Information, Intelligence, Systems and Applications (IISA).
      10.1109/IISA.2015.7388092. 978-1-4673-9311-9. (1-6).
      
      http://ieeexplore.ieee.org/document/7388092/

 444. Sun R, Zhang L, Chen Z and Hao Z. A Balanced Vertex Cut Partition Method
      in Distributed Graph Computing. Revised Selected Papers, Part II, of the
      5th International Conference on Intelligence Science and Big Data
      Engineering. Big Data and Machine Learning Techniques - Volume 9243.
      (43-54).
      
      https://doi.org/10.1007/978-3-319-23862-3_5

 445. Przyjaciel-Zablocki M, Schätzle A and Lausen G. TriAL-QL. Proceedings of
      the 18th International Workshop on Web and Databases. (48-54).
      
      https://doi.org/10.1145/2767109.2767115

 446. Van Gucht D, Williams R, Woodruff D and Zhang Q. The Communication
      Complexity of Distributed Set-Joins with Applications to Matrix
      Multiplication. Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI Symposium
      on Principles of Database Systems. (199-212).
      
      https://doi.org/10.1145/2745754.2745779

 447. Berro A, Megdiche I and Teste O. (2015). Holistic Statistical Open Data
      integration based on integer linear programming 2015 IEEE 9th
      International Conference on Research Challenges in Information Science
      (RCIS). 10.1109/RCIS.2015.7128908. 978-1-4673-6630-4. (468-479).
      
      http://ieeexplore.ieee.org/document/7128908/

 448. Uyar A and Aliyu F. (2015). (2015). Evaluating search features of Google
      Knowledge Graph and Bing Satori. Online Information Review.
      10.1108/OIR-10-2014-0257. 39:2. (197-213). Online publication date:
      13-Apr-2015.. Online publication date: 13-Apr-2015.
      
      https://www.emerald.com/insight/content/doi/10.1108/OIR-10-2014-0257/full/html

 449. Fletcher G, Gyssens M, Leinders D, Surinx D, Van den Bussche J, Van Gucht
      D, Vansummeren S and Wu Y. (2015). Relative expressive power of
      navigational querying on graphs. Information Sciences: an International
      Journal. 298:C. (390-406). Online publication date: 20-Mar-2015.
      
      https://doi.org/10.1016/j.ins.2014.11.031

 450. Lim S, Lee S, Ganesh G, Brown T and Sukumar S. (2015). Graph Processing
      Platforms at Scale: Practices and Experiences 2015 IEEE International
      Symposium on Performance Analysis of Systems and Software (ISPASS).
      10.1109/ISPASS.2015.7095783. 978-1-4799-1957-4. (42-51).
      
      http://ieeexplore.ieee.org/document/7095783/

 451. Goyal V, Agarwal A, Pilli E and Mehta S. (2015). Information integration
      for movies data using graph database 2015 IEEE International Conference on
      Signal Processing, Informatics, Communication and Energy Systems (SPICES).
      10.1109/SPICES.2015.7091523. 978-1-4799-1823-2. (1-5).
      
      http://ieeexplore.ieee.org/document/7091523/

 452. Fionda V, Pirrò G and Gutierrez C. (2015). NautiLOD. ACM Transactions on
      the Web. 9:1. (1-43). Online publication date: 23-Jan-2015.
      
      https://doi.org/10.1145/2697393

 453. Henkel R, Wolkenhauer O and Waltemath D. (2015). Combining computational
      models, semantic annotations and simulation experiments in a graph
      database. Database. 10.1093/database/bau130. 2015. Online publication
      date: 1-Jan-2015.
      
      https://academic.oup.com/database/article/doi/10.1093/database/bau130/2433130

 454. Urma R and Mycroft A. (2015). Source-code queries with graph
      databases-with application to programming language usage and evolution.
      Science of Computer Programming. 97:P1. (127-134). Online publication
      date: 1-Jan-2015.
      
      https://doi.org/10.1016/j.scico.2013.11.010

 455. (2015). References. RDF Database Systems.
      10.1016/B978-0-12-799957-9.00010-9. (227-233).
      
      https://linkinghub.elsevier.com/retrieve/pii/B9780127999579000109

 456. Fletcher G, Gyssens M, Leinders D, Bussche J, Gucht D, Vansummeren S and
      Wu Y. (2015). The impact of transitive closure on the expressiveness of
      navigational query languages on unlabeled graphs. Annals of Mathematics
      and Artificial Intelligence. 73:1-2. (167-203). Online publication date:
      1-Jan-2015.
      
      https://doi.org/10.1007/s10472-013-9346-x

 457. Dimitrov D, Singh L and Mann J. (2015). Query Operators for Comparing
      Uncertain Graphs. Transactions on Large-Scale Data- and Knowledge-Centered
      Systems XVIII. 10.1007/978-3-662-46485-4_5. (115-152).
      
      https://link.springer.com/10.1007/978-3-662-46485-4_5

 458. Pokorný J. (2015). Graph Databases: Their Power and Limitations. Computer
      Information Systems and Industrial Management.
      10.1007/978-3-319-24369-6_5. (58-69).
      
      http://link.springer.com/10.1007/978-3-319-24369-6_5

 459. Castelltort A and Laurent A. (2015). Fuzzy Historical Graph Pattern
      Matching  A NoSQL Graph Database Approach for Fraud Ring Resolution.
      Artificial Intelligence Applications and Innovations.
      10.1007/978-3-319-23868-5_11. (151-167).
      
      http://link.springer.com/10.1007/978-3-319-23868-5_11

 460. Ghrab A, Romero O, Skhiri S, Vaisman A and Zimányi E. (2015). A Framework
      for Building OLAP Cubes on Graphs. Advances in Databases and Information
      Systems. 10.1007/978-3-319-23135-8_7. (92-105).
      
      https://link.springer.com/10.1007/978-3-319-23135-8_7

 461. Lange M and Lozes E. (2015). Conjunctive Visibly-Pushdown Path Queries.
      Fundamentals of Computation Theory. 10.1007/978-3-319-22177-9_25.
      (327-338).
      
      https://link.springer.com/10.1007/978-3-319-22177-9_25

 462. Blanco D, Arias A, Cañete V and Suárez J. (2015). OBEliSK: Novel
      Knowledgebase of Object Features and Exchange Strategies. Computer Vision
      - ECCV 2014 Workshops. 10.1007/978-3-319-16181-5_34. (448-454).
      
      http://link.springer.com/10.1007/978-3-319-16181-5_34

 463. Trojer T, Farwick M, Häusler M and Breu R. (2015). Living Modeling of IT
      Architectures: Challenges and Solutions. Software, Services, and Systems.
      10.1007/978-3-319-15545-6_26. (458-474).
      
      http://link.springer.com/10.1007/978-3-319-15545-6_26

 464. Amirian P, Basiri A, Gales G, Winstanley A and McDonald J. (2015). The
      Next Generation of Navigational Services Using OpenStreetMap Data: The
      Integration of Augmented Reality and Graph Databases. OpenStreetMap in
      GIScience. 10.1007/978-3-319-14280-7_11. (211-228).
      
      https://link.springer.com/10.1007/978-3-319-14280-7_11

 465. Berro A, Megdiche I and Teste O. (2015). A Content-Driven ETL Processes
      for Open Data. New Trends in Database and Information Systems II.
      10.1007/978-3-319-10518-5_3. (29-40).
      
      https://link.springer.com/10.1007/978-3-319-10518-5_3

 466. 
 467. Lukyanenko R, Parsons J and Wiersma Y. (2014). The IQ of the Crowd.
      Information Systems Research. 25:4. (669-689). Online publication date:
      1-Dec-2014.
      
      https://doi.org/10.1287/isre.2014.0537

 468. Mesiti M, Re M and Valentini G. (2014). Think globally and solve locally:
      secondary memory-based network learning for automated multi-species
      function prediction. GigaScience. 10.1186/2047-217X-3-5. 3:1. Online
      publication date: 1-Dec-2014.
      
      https://academic.oup.com/gigascience/article-lookup/doi/10.1186/2047-217X-3-5

 469. Wu Y, Zhong Z, Xiong W and Jing N. (2014). Geo-Link: Correlations of
      Heterogeneous Geo-Spatial Entities. Arabian Journal for Science and
      Engineering. 10.1007/s13369-014-1475-y. 39:12. (8811-8824). Online
      publication date: 1-Dec-2014.
      
      http://link.springer.com/10.1007/s13369-014-1475-y

 470. Sun Y and Jara A. (2014). An extensible and active semantic model of
      information organizing for the Internet of Things. Personal and Ubiquitous
      Computing. 18:8. (1821-1833). Online publication date: 1-Dec-2014.
      
      https://doi.org/10.1007/s00779-014-0786-z

 471. Pivert O, Thion V, Jaudoin H and Smits G. On a Fuzzy Algebra for Querying
      Graph Databases. Proceedings of the 2014 IEEE 26th International
      Conference on Tools with Artificial Intelligence. (748-755).
      
      https://doi.org/10.1109/ICTAI.2014.116

 472. Pinheiro R, Aires B, Araujo A, Holanda M, Walter M and Lifschitz S.
      (2014). Storing provenance data of genome project workflows using graph
      database 2014 IEEE International Conference on Bioinformatics and
      Biomedicine (BIBM). 10.1109/BIBM.2014.6999292. 978-1-4799-5669-2. (16-22).
      
      http://ieeexplore.ieee.org/document/6999292/

 473. Kim K and Eijkhout V. (2014). A Parallel Sparse Direct Solver via
      Hierarchical DAG Scheduling. ACM Transactions on Mathematical Software.
      41:1. (1-27). Online publication date: 27-Oct-2014.
      
      https://doi.org/10.1145/2629641

 474. Hempe N, Waspe R and Rossmann J. Combining Complex Simulations with
      Realistic Virtual Testing Environments — The eRobotics-Approach for
      Semantics-Based Multi-domain VR Simulation Systems. Proceedings of the 4th
      International Conference on Simulation, Modeling, and Programming for
      Autonomous Robots - Volume 8810. (110-121).
      
      https://doi.org/10.1007/978-3-319-11900-7_10

 475. Vaikuntam A and Perumal V. Evaluation of contemporary graph databases.
      Proceedings of the 7th ACM India Computing Conference. (1-10).
      
      https://doi.org/10.1145/2675744.2675752

 476. Zheng Y, Capra L, Wolfson O and Yang H. (2014). Urban Computing. ACM
      Transactions on Intelligent Systems and Technology. 5:3. (1-55). Online
      publication date: 1-Oct-2014.
      
      https://doi.org/10.1145/2629592

 477. Savkli C, Carr R, Chapman M, Chee B and Minch D. (2014). Socrates 2014
      IEEE High Performance Extreme Computing Conference (HPEC).
      10.1109/HPEC.2014.7040993. 978-1-4799-6233-4. (1-6).
      
      http://ieeexplore.ieee.org/document/7040993/

 478. Gröger C, Schwarz H and Mitschang B. The Deep Data Warehouse. Proceedings
      of the 2014 IEEE 18th International Enterprise Distributed Object
      Computing Conference. (210-217).
      
      https://doi.org/10.1109/EDOC.2014.36

 479. Martinez S and Pavlich-Mariscal J. (2014). Formal design of a model
      repository based on knowledge representation using graphs 2014 9th
      Computing Colombian Conference (9CCC). 10.1109/ColumbianCC.2014.6955346.
      978-1-4799-6717-9. (249-254).
      
      http://ieeexplore.ieee.org/document/6955346/

 480. Zhang X and Van den Bussche J. (2014). On the primitivity of operators in
      SPARQL. Information Processing Letters. 10.1016/j.ipl.2014.03.014. 114:9.
      (480-485). Online publication date: 1-Sep-2014.
      
      https://linkinghub.elsevier.com/retrieve/pii/S002001901400057X

 481. Barceló P and Muñoz P. Graph logics with rational relations. Proceedings
      of the Joint Meeting of the Twenty-Third EACSL Annual Conference on
      Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
      Symposium on Logic in Computer Science (LICS). (1-10).
      
      https://doi.org/10.1145/2603088.2603122

 482. Sakr S, Elnikety S and He Y. (2014). Hybrid query execution engine for
      large attributed graphs. Information Systems. 41. (45-73). Online
      publication date: 1-May-2014.
      
      https://doi.org/10.1016/j.is.2013.10.007

 483. Spyropoulou E, De Bie T and Boley M. (2014). Interesting pattern mining in
      multi-relational data. Data Mining and Knowledge Discovery. 28:3.
      (808-849). Online publication date: 1-May-2014.
      
      https://doi.org/10.1007/s10618-013-0319-9

 484. Rezaei Mahdiraji A and Baumann P. Processing scientific mesh queries in
      graph databases. Proceedings of the 23rd International Conference on World
      Wide Web. (1163-1168).
      
      https://doi.org/10.1145/2567948.2580061

 485. Ding Y, Zhou M, Zhao Z, Eisenstat S and Shen X. (2014). Finding the limit.
      ACM SIGARCH Computer Architecture News. 42:1. (607-622). Online
      publication date: 5-Apr-2014.
      
      https://doi.org/10.1145/2654822.2541945

 486. Park Y, Shankar M, Park B and Ghosh J. (2014). Graph databases for
      large-scale healthcare systems: A framework for efficient data management
      and data services 2014 IEEE 30th International Conference on Data
      Engineering Workshops (ICDEW). 10.1109/ICDEW.2014.6818295.
      978-1-4799-3481-2. (12-19).
      
      http://ieeexplore.ieee.org/document/6818295/

 487. Kendall-Morwick J and Leake D. (2014). Facilitating representation and
      retrieval of structured cases. Information Systems. 40. (106-114). Online
      publication date: 1-Mar-2014.
      
      https://doi.org/10.1016/j.is.2012.11.007

 488. McColl R, Ediger D, Poovey J, Campbell D and Bader D. A performance
      evaluation of open source graph databases. Proceedings of the first
      workshop on Parallel programming for analytics applications. (11-18).
      
      https://doi.org/10.1145/2567634.2567638

 489. Agarwal P and Owzar K. (2015). Next Generation Distributed Computing for
      Cancer Research. Cancer Informatics. 10.4137/CIN.S16344. 13s7.
      (CIN.S16344). Online publication date: 1-Jan-2014.
      
      http://journals.sagepub.com/doi/10.4137/CIN.S16344

 490. Barceló P, Libkin L and Reutter J. (2014). Querying Regular Graph
      Patterns. Journal of the ACM. 61:1. (1-54). Online publication date:
      1-Jan-2014.
      
      https://doi.org/10.1145/2559905

 491. Ying X, Xin S and He Y. (2014). Parallel chen-han (PCH) algorithm for
      discrete geodesics. ACM Transactions on Graphics. 33:1. (1-11). Online
      publication date: 1-Jan-2014.
      
      https://doi.org/10.1145/2534161

 492. Xu K, Cao Y, Ma L, Dong Z, Wang R and Hu S. (2014). A practical algorithm
      for rendering interreflections with all-frequency BRDFs. ACM Transactions
      on Graphics. 33:1. (1-16). Online publication date: 1-Jan-2014.
      
      https://doi.org/10.1145/2533687

 493. Daraghmi E and Yuan S. (2014). We are so close, less than 4 degrees
      separating you and me!. Computers in Human Behavior. 30. (273-285). Online
      publication date: 1-Jan-2014.
      
      https://doi.org/10.1016/j.chb.2013.09.014

 494. (2014). References. Digital Asset Ecosystems.
      10.1016/B978-1-84334-716-3.50012-9. (155-176).
      
      https://linkinghub.elsevier.com/retrieve/pii/B9781843347163500129

 495. Pandit D, Chaki N and Chattopadhyay S. (2014). Hyper Object Data Model: A
      Simple Data Model for Handling Semi-Structured Data. Emerging Trends in
      Computing and Communication. 10.1007/978-81-322-1817-3_32. (315-325).
      
      https://link.springer.com/10.1007/978-81-322-1817-3_32

 496. Kendall-Morwick J and Leake D. (2014). A Study of Two-Phase Retrieval for
      Process-Oriented Case-Based Reasoning. Successful Case-based Reasoning
      Applications-2. 10.1007/978-3-642-38736-4_2. (7-27).
      
      https://link.springer.com/10.1007/978-3-642-38736-4_2

 497. Daltio J and Medeiros C. (2014). Handling Multiple Foci in Graph
      Databases. Data Integration in the Life Sciences.
      10.1007/978-3-319-08590-6_6. (58-65).
      
      http://link.springer.com/10.1007/978-3-319-08590-6_6

 498. Jankun-Kelly T, Dwyer T, Holten D, Hurter C, Nöllenburg M, Weaver C and Xu
      K. (2014). Scalability Considerations for Multivariate Graph
      Visualization. Multivariate Network Visualization.
      10.1007/978-3-319-06793-3_10. (207-235).
      
      http://link.springer.com/10.1007/978-3-319-06793-3_10

 499. Wycislik L and Warchal L. (2014). A Performance Comparison of Several
      Common Computation Tasks Used in Social Network Analysis Performed on
      Graph and Relational Databases. Man-Machine Interactions 3.
      10.1007/978-3-319-02309-0_70. (651-659).
      
      https://link.springer.com/10.1007/978-3-319-02309-0_70

 500. Navarro L, Appel A and Junior E. (2014). GraphDB – Storing Large Graphs on
      Secondary Memory. New Trends in Databases and Information Systems.
      10.1007/978-3-319-01863-8_20. (177-186).
      
      https://link.springer.com/10.1007/978-3-319-01863-8_20

 501. San Martín M and Gutierrez C. (2014). Transforming and Integrating Social
      Networks and Social Media Data. Encyclopedia of Social Network Analysis
      and Mining. 10.1007/978-1-4614-6170-8_389. (2202-2214).
      
      http://link.springer.com/10.1007/978-1-4614-6170-8_389

 502. Cerinšek M and Batagelj V. (2014). Sources of Network Data. Encyclopedia
      of Social Network Analysis and Mining. 10.1007/978-1-4614-6170-8_313.
      (1946-1954).
      
      http://link.springer.com/10.1007/978-1-4614-6170-8_313

 503. Baglioni M, Pieroni S, Geraci F, Mariani F, Molinaro S, Pellegrini M and
      Lastres E. (2013). A New Framework for Distilling Higher Quality
      Information from Health Data via Social Network Analysis 2013 IEEE 13th
      International Conference on Data Mining Workshops (ICDMW).
      10.1109/ICDMW.2013.142. 978-1-4799-3142-2. (48-55).
      
      http://ieeexplore.ieee.org/document/6753902/

 504. Lukyanenko R and Parsons J. Is Traditional Conceptual Modeling Becoming
      Obsolete?. Proceedings of the 32nd International Conference on Conceptual
      Modeling - Volume 8217. (61-73).
      
      https://doi.org/10.1007/978-3-642-41924-9_6

 505. Bao Z, Tay Y and Zhou J. sonSchema. Proceedings of the 32nd International
      Conference on Conceptual Modeling - Volume 8217. (197-211).
      
      https://doi.org/10.1007/978-3-642-41924-9_18

 506. (2013). Next-Generation Field Guides. BioScience.
      10.1525/bio.2013.63.11.8. 63:11. (891-899). Online publication date:
      1-Nov-2013.
      
      https://academic.oup.com/bioscience/article-lookup/doi/10.1525/bio.2013.63.11.8

 507. Fionda V and Pirro' G. Querying graphs with preferences. Proceedings of
      the 22nd ACM international conference on Information & Knowledge
      Management. (929-938).
      
      https://doi.org/10.1145/2505515.2505758

 508. Rezaei Mahdiraji A, Baumann P and Berti G. ImG-complex. Proceedings of the
      22nd ACM international conference on Information & Knowledge Management.
      (1619-1624).
      
      https://doi.org/10.1145/2505515.2505733

 509. Hu B, Carvalho N and Matsutsuka T. (2013). Towards Big Linked Data.
      International Journal of Data Warehousing and Mining. 9:4. (19-43). Online
      publication date: 1-Oct-2013.
      
      https://doi.org/10.4018/ijdwm.2013100102

 510. Jouili S and Reynaga A. imGraph. Proceedings of the 2013 International
      Conference on Social Computing. (732-737).
      
      https://doi.org/10.1109/SocialCom.2013.109

 511. Castelltort A and Laurent A. (2013). Representing history in
      graph-oriented NoSQL databases: A versioning system 2013 Eighth
      International Conference on Digital Information Management (ICDIM).
      10.1109/ICDIM.2013.6694022. 978-1-4799-0615-4. (228-234).
      
      http://ieeexplore.ieee.org/document/6694022/

 512. Mahdiraji A and Baumann P. (2013). Database support for unstructured
      meshes. Proceedings of the VLDB Endowment. 6:12. (1404-1409). Online
      publication date: 28-Aug-2013.
      
      https://doi.org/10.14778/2536274.2536326

 513. Rapti A, Theodoridis E and Tsakalidis A. Evaluation of Protein-Protein
      Interaction Management Systems. Proceedings of the 2013 24th International
      Workshop on Database and Expert Systems Applications. (100-104).
      
      https://doi.org/10.1109/DEXA.2013.39

 514. Ghrab A, Skhiri S, Jouili S and Zimányi E. An Analytics-Aware Conceptual
      Model for Evolving Graphs. Proceedings of the 15th International
      Conference on Data Warehousing and Knowledge Discovery - Volume 8057.
      (1-12).
      
      https://doi.org/10.1007/978-3-642-40131-2_1

 515. Zhang Q, Chen Z, Lv A, Zhao L, Liu F and Zou J. A Universal Storage
      Architecture for Big Data in Cloud Environment. Proceedings of the 2013
      IEEE International Conference on Green Computing and Communications and
      IEEE Internet of Things and IEEE Cyber, Physical and Social Computing.
      (476-480).
      
      https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.96

 516. Yang S, Tang W and He B. (2013). A Parallel Query Processing Technique for
      Keyword Search over Data Graph. Applied Mechanics and Materials.
      10.4028/www.scientific.net/AMM.380-384.2609. 380-384. (2609-2613).
      
      https://www.scientific.net/AMM.380-384.2609

 517. Halpin H and Mcneill F. (2013). Discovering meaning on the go in large
      heterogenous data. Artificial Intelligence Review. 40:2. (107-126). Online
      publication date: 1-Aug-2013.
      
      https://doi.org/10.1007/s10462-012-9377-4

 518. Mazuran M, Serra E and Zaniolo C. (2013). Extending the power of datalog
      recursion. The VLDB Journal — The International Journal on Very Large Data
      Bases. 22:4. (471-493). Online publication date: 1-Aug-2013.
      
      https://doi.org/10.1007/s00778-012-0299-1

 519. Poulovassilis A. Database research challenges and opportunities of big
      graph data. Proceedings of the 29th British National conference on Big
      Data. (29-32).
      
      https://doi.org/10.1007/978-3-642-39467-6_6

 520. Schmitt O and Majchrzak T. (2013). Document-Based Databases for Medical
      Information Systems and Crisis Management. International Journal of
      Information Systems for Crisis Response and Management.
      10.4018/ijiscram.2013070104. 5:3. (63-80). Online publication date:
      1-Jul-2013.
      
      https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijiscram.2013070104

 521. Liu Y and Vitolo T. Graph Data Warehouse. Proceedings of the 2013 IEEE
      International Congress on Big Data. (433-434).
      
      https://doi.org/10.1109/BigData.Congress.2013.72

 522. De Virgilio R, Maccioni A and Torlone R. Converting relational to graph
      databases. First International Workshop on Graph Data Management
      Experiences and Systems. (1-6).
      
      https://doi.org/10.1145/2484425.2484426

 523. Libkin L, Reutter J and Vrgoč D. Trial for RDF. Proceedings of the 32nd
      ACM SIGMOD-SIGACT-SIGAI symposium on Principles of database systems.
      (201-212).
      
      https://doi.org/10.1145/2463664.2465226

 524. Barceló Baeza P. Querying graph databases. Proceedings of the 32nd ACM
      SIGMOD-SIGACT-SIGAI symposium on Principles of database systems.
      (175-188).
      
      https://doi.org/10.1145/2463664.2465216

 525. Barceló Baeza P, Romero M and Vardi M. Semantic acyclicity on graph
      databases. Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI symposium on
      Principles of database systems. (237-248).
      
      https://doi.org/10.1145/2463664.2463671

 526. Liptchinsky V, Satzger B, Zabolotnyi R and Dustdar S. Expressive languages
      for selecting groups from graph-structured data. Proceedings of the 22nd
      international conference on World Wide Web. (761-770).
      
      https://doi.org/10.1145/2488388.2488455

 527. Shijie Zhang , Jiong Yang and Sun B. (2013). SuReQL: A subgraph match
      based relational model for large graphs 2013 IEEE 29th International
      Conference on Data Engineering Workshops (ICDEW 2013).
      10.1109/ICDEW.2013.6547452. 978-1-4673-5304-5. (212-215).
      
      http://ieeexplore.ieee.org/document/6547452/

 528. Ames S, Gokhale M and Maltzahn C. (2013). QMDS. International Journal of
      Parallel, Emergent and Distributed Systems. 28:2. (159-183). Online
      publication date: 1-Apr-2013.
      
      https://doi.org/10.1080/17445760.2012.658802

 529. Libkin L, Martens W and Vrgoč D. Querying graph databases with XPath.
      Proceedings of the 16th International Conference on Database Theory.
      (129-140).
      
      https://doi.org/10.1145/2448496.2448513

 530. Hellings J, Kuijpers B, Van den Bussche J and Zhang X. Walk logic as a
      framework for path query languages on graph databases. Proceedings of the
      16th International Conference on Database Theory. (117-128).
      
      https://doi.org/10.1145/2448496.2448512

 531. Barceló P, Reutter J and Libkin L. (2013). Parameterized regular
      expressions and their languages. Theoretical Computer Science. 474.
      (21-45). Online publication date: 1-Feb-2013.
      
      https://doi.org/10.1016/j.tcs.2012.12.036

 532. Dąbrowski R, Timoszuk G and Stencel K. (2013). One Graph to Rule Them All
      Software Measurement and Management. Fundamenta Informaticae. 128:1-2.
      (47-63). Online publication date: 1-Jan-2013.
      
      /doi/10.5555/2594991.2594996

 533. Sakr S and Al-Naymat G. An Overview of Graph Indexing and Querying
      Techniques. Bioinformatics. 10.4018/978-1-4666-3604-0.ch011. (222-239).
      
      http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-3604-0.ch011

 534. Farley T, Kiefer J, Lee P, Von Hoff D, Trent J, Colbourn C and Mousses S.
      (2013). The BioIntelligence Framework: a new computational platform for
      biomedical knowledge computing. Journal of the American Medical
      Informatics Association. 10.1136/amiajnl-2011-000646. 20:1. (128-133).
      Online publication date: 1-Jan-2013.
      
      https://academic.oup.com/jamia/article-lookup/doi/10.1136/amiajnl-2011-000646

 535. Soussi R, Cuvelier E, Aufaure M, Louati A and Lechevallier Y. (2013).
      DB2SNA: An All-in-One Tool for Extraction and Aggregation of Underlying
      Social Networks from Relational Databases. The Influence of Technology on
      Social Network Analysis and Mining. 10.1007/978-3-7091-1346-2_23.
      (521-545).
      
      https://link.springer.com/10.1007/978-3-7091-1346-2_23

 536. Barceló P, Fontaine G and Lin A. (2013). Expressive Path Queries on Graphs
      with Data. Logic for Programming, Artificial Intelligence, and Reasoning.
      10.1007/978-3-642-45221-5_5. (71-85).
      
      http://link.springer.com/10.1007/978-3-642-45221-5_5

 537. Dimitrov D, Singh L and Mann J. (2013). Comparison Queries for Uncertain
      Graphs. Database and Expert Systems Applications.
      10.1007/978-3-642-40173-2_13. (124-140).
      
      http://link.springer.com/10.1007/978-3-642-40173-2_13

 538. Kirrane S, Mileo A and Decker S. (2013). Applying DAC Principles to the
      RDF Graph Data Model. Security and Privacy Protection in Information
      Processing Systems. 10.1007/978-3-642-39218-4_6. (69-82).
      
      http://link.springer.com/10.1007/978-3-642-39218-4_6

 539. Libkin L, Tan T and Vrgoč D. (2013). Regular Expressions with Binding over
      Data Words for Querying Graph Databases. Developments in Language Theory.
      10.1007/978-3-642-38771-5_29. (325-337).
      
      http://link.springer.com/10.1007/978-3-642-38771-5_29

 540. de Cesare S, Foy G and Partridge C. (2013). Re-engineering Data with 4D
      Ontologies and Graph Databases. Progress in Pattern Recognition, Image
      Analysis, Computer Vision, and Applications. 10.1007/978-3-642-38490-5_29.
      (304-316).
      
      http://link.springer.com/10.1007/978-3-642-38490-5_29

 541. Pereira A and Appel A. (2013). Modeling and Storing Complex Network with
      Graph-Tree. New Trends in Databases and Information Systems.
      10.1007/978-3-642-32518-2_29. (305-315).
      
      https://link.springer.com/10.1007/978-3-642-32518-2_29

 542. Dąbrowski R. On architecture warehouses and software intelligence.
      Proceedings of the 4th international conference on Future Generation
      Information Technology. (251-262).
      
      https://doi.org/10.1007/978-3-642-35585-1_35

 543. Hu B, Carvalho N, Laera L and Matsutsuka T. Towards big linked data.
      Proceedings of the 14th International Conference on Information
      Integration and Web-based Applications & Services. (167-176).
      
      https://doi.org/10.1145/2428736.2428764

 544. Soussi R. SPIDER-graph. Proceedings of the 31st international conference
      on Conceptual Modeling. (543-552).
      
      https://doi.org/10.1007/978-3-642-34002-4_44

 545. Hoang D, Tjoa A and Priebe T. (2012). Query-by-example approach towards
      on-demand multidimensional analysis. International Journal of Business
      Intelligence and Data Mining. 7:3. (137-151). Online publication date:
      1-Oct-2012.
      
      https://doi.org/10.1504/IJBIDM.2012.049551

 546. Zhang J, Liu H and Yu H. (2012). The motive for constructing a high level
      data model on cloud databases 2012 World Congress on Information and
      Communication Technologies (WICT). 10.1109/WICT.2012.6409257.
      978-1-4673-4805-8. (1198-1203).
      
      http://ieeexplore.ieee.org/document/6409257/

 547. Indrawan-Santiago M. Database Research. Proceedings of the 2012 15th
      International Conference on Network-Based Information Systems. (45-51).
      
      https://doi.org/10.1109/NBiS.2012.95

 548. Šipetić M. Design and implementation of a space model server for indoor
      location-based services. Proceedings of the 2012 ACM Conference on
      Ubiquitous Computing. (572-575).
      
      https://doi.org/10.1145/2370216.2370312

 549. Jayathilake D, Sooriaarachchi C, Gunawardena T, Kulasuriya B and Dayaratne
      T. (2012). A study into the capabilities of NoSQL databases in handling a
      highly heterogeneous tree 2012 IEEE 6th International Conference on
      Information and Automation for Sustainability (ICIAfS).
      10.1109/ICIAFS.2012.6419890. 978-1-4673-1975-1. (106-111).
      
      http://ieeexplore.ieee.org/document/6419890/

 550. Martínez-Bazan N, Águila-Lorente M, Muntés-Mulero V, Dominguez-Sal D,
      Gómez-Villamor S and Larriba-Pey J. Efficient graph management based on
      bitmap indices. Proceedings of the 16th International Database Engineering
      & Applications Sysmposium. (110-119).
      
      https://doi.org/10.1145/2351476.2351489

 551. Barcelo P, Figueira D and Libkin L. Graph Logics with Rational Relations
      and the Generalized Intersection Problem. Proceedings of the 2012 27th
      Annual IEEE/ACM Symposium on Logic in Computer Science. (115-124).
      
      https://doi.org/10.1109/LICS.2012.23

 552. Hadjali A, Mokhtari A and Pivert O. (2012). Expressing and processing
      complex preferences in route planning queries. Fuzzy Sets and Systems.
      196. (82-104). Online publication date: 1-Jun-2012.
      
      https://doi.org/10.1016/j.fss.2012.01.006

 553. Barricelli B, Valtolina S and Marzullo M. ArchMatrix. Proceedings of the
      International Working Conference on Advanced Visual Interfaces. (681-684).
      
      https://doi.org/10.1145/2254556.2254684

 554. Losemann K. Foundations of regular expressions in XML schema languages and
      SPARQL. Proceedings of the on SIGMOD/PODS 2012 PhD Symposium. (39-44).
      
      https://doi.org/10.1145/2213598.2213609

 555. Sheng C, Tao Y and Li J. (2012). Exact and approximate algorithms for the
      most connected vertex problem. ACM Transactions on Database Systems. 37:2.
      (1-39). Online publication date: 1-May-2012.
      
      https://doi.org/10.1145/2188349.2188354

 556. Wood P. (2012). Query languages for graph databases. ACM SIGMOD Record.
      41:1. (50-60). Online publication date: 25-Apr-2012.
      
      https://doi.org/10.1145/2206869.2206879

 557. Ritter D. From network mining to large scale business networks.
      Proceedings of the 21st International Conference on World Wide Web.
      (989-996).
      
      https://doi.org/10.1145/2187980.2188233

 558. Cheng R, Hong J, Kyrola A, Miao Y, Weng X, Wu M, Yang F, Zhou L, Zhao F
      and Chen E. Kineograph. Proceedings of the 7th ACM european conference on
      Computer Systems. (85-98).
      
      https://doi.org/10.1145/2168836.2168846

 559. Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A and Hellerstein J.
      (2012). Distributed GraphLab. Proceedings of the VLDB Endowment. 5:8.
      (716-727). Online publication date: 1-Apr-2012.
      
      https://doi.org/10.14778/2212351.2212354

 560. Angles R. A Comparison of Current Graph Database Models. Proceedings of
      the 2012 IEEE 28th International Conference on Data Engineering Workshops.
      (171-177).
      
      https://doi.org/10.1109/ICDEW.2012.31

 561. Libkin L and Vrgoč D. Regular path queries on graphs with data.
      Proceedings of the 15th International Conference on Database Theory.
      (74-85).
      
      https://doi.org/10.1145/2274576.2274585

 562. Libkin L and Vrgoč D. Regular expressions for data words. Proceedings of
      the 18th international conference on Logic for Programming, Artificial
      Intelligence, and Reasoning. (274-288).
      
      https://doi.org/10.1007/978-3-642-28717-6_22

 563. Aspinall D, Denney E and Lüth C. Querying proofs. Proceedings of the 18th
      international conference on Logic for Programming, Artificial
      Intelligence, and Reasoning. (92-106).
      
      https://doi.org/10.1007/978-3-642-28717-6_10

 564. Fletcher G, Gyssens M, Leinders D, Van den Bussche J, Van Gucht D,
      Vansummeren S and Wu Y. The impact of transitive closure on the boolean
      expressiveness of navigational query languages on graphs. Proceedings of
      the 7th international conference on Foundations of Information and
      Knowledge Systems. (124-143).
      
      https://doi.org/10.1007/978-3-642-28472-4_8

 565. Dries A, Nijssen S and De Raedt L. BiQL. Bisociative Knowledge Discovery.
      (147-165).
      
      /doi/10.5555/2363300.2363314

 566. Alkhateeb F and Euzenat J. Querying RDF Data. Graph Data Management.
      10.4018/978-1-61350-053-8.ch015. (335-353).
      
      http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-61350-053-8.ch015

 567. Sakr S and Al-Naymat G. An Overview of Graph Indexing and Querying
      Techniques. Graph Data Management. 10.4018/978-1-61350-053-8.ch004.
      (71-88).
      
      http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-61350-053-8.ch004

 568. Srinivasa S. Data, Storage and Index Models for Graph Databases. Graph
      Data Management. 10.4018/978-1-61350-053-8.ch003. (47-70).
      
      http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-61350-053-8.ch003

 569. Rodriguez M and Neubauer P. The Graph Traversal Pattern. Graph Data
      Management. 10.4018/978-1-61350-053-8.ch002. (29-46).
      
      http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-61350-053-8.ch002

 570. Ritter D. (2012). The Business Graph Protocol. Information and Software
      Technologies. 10.1007/978-3-642-33308-8_19. (226-240).
      
      http://link.springer.com/10.1007/978-3-642-33308-8_19

 571. Zhao Z, Ahn G, Hu H and Mahi D. (2012). SocialImpact: Systematic Analysis
      of Underground Social Dynamics. Computer Security – ESORICS 2012.
      10.1007/978-3-642-33167-1_50. (877-894).
      
      http://link.springer.com/10.1007/978-3-642-33167-1_50

 572. Dries A, Nijssen S and De Raedt L. (2012). BiQL: A Query Language for
      Analyzing Information Networks. Bisociative Knowledge Discovery.
      10.1007/978-3-642-31830-6_11. (147-165).
      
      http://link.springer.com/10.1007/978-3-642-31830-6_11

 573. Luo Y, Picalausa F, Fletcher G, Hidders J and Vansummeren S. (2012).
      Storing and Indexing Massive RDF Datasets. Semantic Search over the Web.
      10.1007/978-3-642-25008-8_2. (31-60).
      
      http://link.springer.com/10.1007/978-3-642-25008-8_2

 574. Hoang D, Priebe T and Tjoa A. Hypergraph-based multidimensional data
      modeling towards on-demand business analysis. Proceedings of the 13th
      International Conference on Information Integration and Web-based
      Applications and Services. (36-43).
      
      https://doi.org/10.1145/2095536.2095545

 575. Ivanova V and Stromback L. Creating Infrastructure for Tool-Independent
      Querying and Exploration of Scientific Workflows. Proceedings of the 2011
      IEEE Seventh International Conference on eScience. (287-294).
      
      https://doi.org/10.1109/eScience.2011.47

 576. Sahoo S, Nguyen V, Bodenreider O, Parikh P, Minning T and Sheth A. (2011).
      A unified framework for managing provenance information in translational
      research. BMC Bioinformatics. 10.1186/1471-2105-12-461. 12:1. Online
      publication date: 1-Dec-2011.
      
      https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-461

 577. (2011). References. Data Management of Protein Interaction Networks.
      10.1002/9781118103746.refs. (157-176). Online publication date:
      4-Nov-2011.
      
      https://onlinelibrary.wiley.com/doi/10.1002/9781118103746.refs

 578. YU G, GU Y, BAO Y and WANG Z. (2011). Large Scale Graph Data Processing on
      Cloud Computing Environments. Chinese Journal of Computers.
      10.3724/SP.J.1016.2011.01753. 34:10. (1753-1767). Online publication date:
      28-Oct-2011.
      
      http://pub.chinasciencejournal.com/article/getArticleRedirect.action?doiCode=10.3724/SP.J.1016.2011.01753

 579. Tausch N, Philippsen M and Adersberger J. A statically typed query
      language for property graphs. Proceedings of the 15th Symposium on
      International Database Engineering & Applications. (219-225).
      
      https://doi.org/10.1145/2076623.2076653

 580. Dąbrowski R, Stencel K and Timoszuk G. Software is a directed multigraph.
      Proceedings of the 5th European conference on Software architecture.
      (360-369).
      
      /doi/10.5555/2041790.2041838

 581. Beheshti S, Benatallah B, Motahari-Nezhad H and Sakr S. A query language
      for analyzing business processes execution. Proceedings of the 9th
      international conference on Business process management. (281-297).
      
      /doi/10.5555/2040283.2040308

 582. Gutierrez C. Modeling the web of data. Proceedings of the 7th
      international conference on Reasoning web: semantic technologies for the
      web of data. (416-444).
      
      /doi/10.5555/2033313.2033321

 583. Ames S, Gokhale M and Maltzahn C. QMDS. Proceedings of the 2011 IEEE Sixth
      International Conference on Networking, Architecture, and Storage.
      (268-277).
      
      https://doi.org/10.1109/NAS.2011.33

 584. Inaba K, Hidaka S, Hu Z, Kato H and Nakano K. Graph-transformation
      verification using monadic second-order logic. Proceedings of the 13th
      international ACM SIGPLAN symposium on Principles and practices of
      declarative programming. (17-28).
      
      https://doi.org/10.1145/2003476.2003482

 585. Braunschweig K, Thiele M and Lehner W. A flexible graph-based data model
      supporting incremental schema design and evolution. Proceedings of the
      11th international conference on Current Trends in Web Engineering.
      (302-306).
      
      https://doi.org/10.1007/978-3-642-27997-3_29

 586. Arenas M and Pérez J. Querying semantic web data with SPARQL. Proceedings
      of the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
      database systems. (305-316).
      
      https://doi.org/10.1145/1989284.1989312

 587. Barceló P, Libkin L and Reutter J. Querying graph patterns. Proceedings of
      the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
      systems. (199-210).
      
      https://doi.org/10.1145/1989284.1989307

 588. Takada S. Finding web services via BPEL fragment search. Proceedings of
      the 3rd International Workshop on Search-Driven Development: Users,
      Infrastructure, Tools, and Evaluation. (9-12).
      
      https://doi.org/10.1145/1985429.1985432

 589. Prat-Pérez A, Dominguez-Sal D and Larriba-Pey J. Social based layouts for
      the increase of locality in graph operations. Proceedings of the 16th
      international conference on Database systems for advanced applications -
      Volume Part I. (558-569).
      
      /doi/10.5555/1997305.1997356

 590. Martinez-Bazan N, Gomez-Villamor S and Escale-Claveras F. DEX. Proceedings
      of the 2011 IEEE 27th International Conference on Data Engineering
      Workshops. (124-127).
      
      https://doi.org/10.1109/ICDEW.2011.5767616

 591. Fletcher G, Gyssens M, Leinders D, Van den Bussche J, Van Gucht D,
      Vansummeren S and Wu Y. Relative expressive power of navigational querying
      on graphs. Proceedings of the 14th International Conference on Database
      Theory. (197-207).
      
      https://doi.org/10.1145/1938551.1938578

 592. Sakr S and Al-Naymat G. Querying Graph Databases. Advanced Database Query
      Systems. 10.4018/978-1-60960-475-2.ch013. (304-322).
      
      http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-60960-475-2.ch013

 593. Dąbrowski R, Stencel K and Timoszuk G. (2011). Software Is a Directed
      Multigraph. Software Architecture. 10.1007/978-3-642-23798-0_38.
      (360-369).
      
      http://link.springer.com/10.1007/978-3-642-23798-0_38

 594. Beheshti S, Benatallah B, Motahari-Nezhad H and Sakr S. (2011). A Query
      Language for Analyzing Business Processes Execution. Business Process
      Management. 10.1007/978-3-642-23059-2_22. (281-297).
      
      http://link.springer.com/10.1007/978-3-642-23059-2_22

 595. Gutierrez C. (2011). Modeling the Web of Data (Introductory Overview).
      Reasoning Web. Semantic Technologies for the Web of Data.
      10.1007/978-3-642-23032-5_8. (416-444).
      
      http://link.springer.com/10.1007/978-3-642-23032-5_8

 596. Plantikow S and Jorra M. (2011). Latency-Optimal Walks in Replicated and
      Partitioned Graphs. Database Systems for Adanced Applications.
      10.1007/978-3-642-20244-5_3. (14-27).
      
      http://link.springer.com/10.1007/978-3-642-20244-5_3

 597. Prat-Pérez A, Dominguez-Sal D and Larriba-Pey J. (2011). Social Based
      Layouts for the Increase of Locality in Graph Operations. Database Systems
      for Advanced Applications. 10.1007/978-3-642-20149-3_40. (558-569).
      
      http://link.springer.com/10.1007/978-3-642-20149-3_40

 598. Soussi R, Aufaure M and Baazaoui H. (2011). Graph Database for
      Collaborative Communities. Community-Built Databases.
      10.1007/978-3-642-19047-6_9. (205-234).
      
      https://link.springer.com/10.1007/978-3-642-19047-6_9

 599. Dominguez-Sal D, Martinez-Bazan N, Muntes-Mulero V, Baleta P and
      Larriba-Pey J. (2011). A Discussion on the Design of Graph Database
      Benchmarks. Performance Evaluation, Measurement and Characterization of
      Complex Systems. 10.1007/978-3-642-18206-8_3. (25-40).
      
      http://link.springer.com/10.1007/978-3-642-18206-8_3

 600. Cannataro M, Guzzi P and Veltri P. (2010). Protein-to-protein
      interactions. ACM Computing Surveys. 43:1. (1-36). Online publication
      date: 1-Nov-2010.
      
      https://doi.org/10.1145/1824795.1824796

 601. Pérez J, Arenas M and Gutierrez C. (2010). nSPARQL. Web Semantics:
      Science, Services and Agents on the World Wide Web. 8:4. (255-270). Online
      publication date: 1-Nov-2010.
      
      https://doi.org/10.1016/j.websem.2010.01.002

 602. Dries A and Nijssen S. Analyzing graph databases by aggregate queries.
      Proceedings of the Eighth Workshop on Mining and Learning with Graphs.
      (37-45).
      
      https://doi.org/10.1145/1830252.1830258

 603. Iordanov B. HyperGraphDB. Proceedings of the 2010 international conference
      on Web-age information management. (25-36).
      
      /doi/10.5555/1927585.1927589

 604. Saber M, Aref M and Gharib T. (2010). An efficient filtering technique for
      super-graph query processing 2010 Fifth International Conference on
      Digital Information Management (ICDIM). 10.1109/ICDIM.2010.5664712.
      978-1-4244-7572-8. (174-181).
      
      http://ieeexplore.ieee.org/document/5664712/

 605. Sakr S and Al‐Naymat G. (2010). Graph indexing and querying: a review.
      International Journal of Web Information Systems.
      10.1108/17440081011053104. 6:2. (101-120). Online publication date:
      22-Jun-2010.
      
      https://www.emerald.com/insight/content/doi/10.1108/17440081011053104/full/html

 606. Tao Y, Sheng C and Li J. Finding maximum degrees in hidden bipartite
      graphs. Proceedings of the 2010 ACM SIGMOD International Conference on
      Management of data. (891-902).
      
      https://doi.org/10.1145/1807167.1807263

 607. Vicknair C, Macias M, Zhao Z, Nan X, Chen Y and Wilkins D. A comparison of
      a graph database and a relational database. Proceedings of the 48th Annual
      Southeast Regional Conference. (1-6).
      
      https://doi.org/10.1145/1900008.1900067

 608. Soussi R, Aufaure M and Baazaoui H. Towards Social Network Extraction
      Using a Graph Database. Proceedings of the 2010 Second International
      Conference on Advances in Databases, Knowledge, and Data Applications.
      (28-34).
      
      https://doi.org/10.1109/DBKDA.2010.19

 609. Ciglan M and Nørvåg K. SGDB. Proceedings of the 15th international
      conference on Database systems for advanced applications. (45-56).
      
      /doi/10.5555/1880853.1880859

 610. Terje Bjørke J, Nilsen S and Varga M. (2010). Visualization of network
      structure by the application of hypernodes. International Journal of
      Approximate Reasoning. 51:3. (275-293). Online publication date:
      1-Feb-2010.
      
      https://doi.org/10.1016/j.ijar.2009.09.003

 611. Laha A. On the issues of building information warehouses. Proceedings of
      the Third Annual ACM Bangalore Conference. (1-8).
      
      https://doi.org/10.1145/1754288.1754290

 612. Grefenstette G and Wilber L. (2010). Search-Based Applications: At the
      Confluence of Search and Database Technologies. Synthesis Lectures on
      Information Concepts, Retrieval, and Services.
      10.2200/S00320ED1V01Y201012ICR017. 2:1. (1-141). Online publication date:
      1-Jan-2010.
      
      http://www.morganclaypool.com/doi/abs/10.2200/S00320ED1V01Y201012ICR017

 613. Iordanov B. (2010). HyperGraphDB: A Generalized Graph Database. Web-Age
      Information Management. 10.1007/978-3-642-16720-1_3. (25-36).
      
      http://link.springer.com/10.1007/978-3-642-16720-1_3

 614. Ciglan M and Nørvåg K. (2010). SGDB – Simple Graph Database Optimized for
      Activation Spreading Computation. Database Systems for Advanced
      Applications. 10.1007/978-3-642-14589-6_5. (45-56).
      
      http://link.springer.com/10.1007/978-3-642-14589-6_5

 615. Fletcher G and Beck P. Scalable indexing of RDF graphs for efficient join
      processing. Proceedings of the 18th ACM conference on Information and
      knowledge management. (1513-1516).
      
      https://doi.org/10.1145/1645953.1646159

 616. Dries A, Nijssen S and De Raedt L. A query language for analyzing
      networks. Proceedings of the 18th ACM conference on Information and
      knowledge management. (485-494).
      
      https://doi.org/10.1145/1645953.1646016

 617. Benazzouz Y, Beaune P, Ramparany F and Chotard L. (2009). Context
      data-driven approach for ubiquitous computing applications 2009 Fourth
      International Conference on Digital Information Management (ICDIM).
      10.1109/ICDIM.2009.5356771. 978-1-4244-4253-9. (1-6).
      
      http://ieeexplore.ieee.org/document/5356771/

 618. Arenas M, Gutierrez C and Pérez J. Foundations of RDF Databases. Reasoning
      Web. Semantic Technologies for Information Systems. (158-204).
      
      https://doi.org/10.1007/978-3-642-03754-2_4

 619. Hoareau C and Satoh I. From model checking to data management in pervasive
      computing. Proceedings of the 2009 international conference on Pervasive
      services. (41-48).
      
      https://doi.org/10.1145/1568199.1568206

 620. Roussopoulos N and Karagiannis D. Conceptual Modeling. Conceptual
      Modeling: Foundations and Applications. (139-152).
      
      https://doi.org/10.1007/978-3-642-02463-4_9

 621. Jin R, Xiang Y, Ruan N and Fuhry D. 3-HOP. Proceedings of the 2009 ACM
      SIGMOD International Conference on Management of data. (813-826).
      
      https://doi.org/10.1145/1559845.1559930

 622. San Martín M and Gutierrez C. Representing, Querying and Transforming
      Social Networks with RDF/SPARQL. Proceedings of the 6th European Semantic
      Web Conference on The Semantic Web: Research and Applications. (293-307).
      
      https://doi.org/10.1007/978-3-642-02121-3_24

 623. Hoareau C and Satoh I. (2009). Modeling and Processing Information for
      Context-Aware Computing: A Survey. New Generation Computing. 27:3.
      (177-196). Online publication date: 1-May-2009.
      
      https://doi.org/10.1007/s00354-009-0060-5

 624. Ronen R and Shmueli O. SoQL. Proceedings of the 2009 IEEE International
      Conference on Data Engineering. (1595-1602).
      
      https://doi.org/10.1109/ICDE.2009.172

 625. Gupta A. (2009). Graph Data Management in Scientific Applications.
      Encyclopedia of Database Systems. 10.1007/978-0-387-39940-9_1298.
      (1261-1263).
      
      http://link.springer.com/10.1007/978-0-387-39940-9_1298

 626. Pérez J, Arenas M and Gutierrez C. nSPARQL. Proceedings of the 7th
      International Conference on The Semantic Web. (66-81).
      
      https://doi.org/10.1007/978-3-540-88564-1_5

 627. Lobo J and Pappas V. C2. Proceedings of the 2008 IEEE Workshop on Policies
      for Distributed Systems and Networks. (29-36).
      
      https://doi.org/10.1109/POLICY.2008.45

 628. Arenas M, Gutierrez C and Pérez J. An Extension of SPARQL for RDFS.
      Semantic Web, Ontologies and Databases. (1-20).
      
      https://doi.org/10.1007/978-3-540-70960-2_1

 629. Yang B and O'Hallaron D. (1997). Parallel breadth-first BDD construction.
      ACM SIGPLAN Notices. 32:7. (145-156). Online publication date: 1-Jul-1997.
      
      https://doi.org/10.1145/263767.263784

 630. Dahlbom B and Mathiassen L. (1997). The future of our profession.
      Communications of the ACM. 40:6. (80-89). Online publication date:
      1-Jun-1997.
      
      https://doi.org/10.1145/255656.255706

 631. Parsons J and Wand Y. (1997). Choosing classes in conceptual modeling.
      Communications of the ACM. 40:6. (63-69). Online publication date:
      1-Jun-1997.
      
      https://doi.org/10.1145/255656.255700

 632. Perez J, Arenas M and Gutiirrez C. nSPARQL: A Navigational Language for
      RDF. SSRN Electronic Journal. 10.2139/ssrn.3199487.
      
      https://www.ssrn.com/abstract=3199487

 633. Poulovassilis A, Selmer P and Wood P. Approximation and Relaxation of
      Semantic Web Path Queries. SSRN Electronic Journal. 10.2139/ssrn.3199265.
      
      https://www.ssrn.com/abstract=3199265

Show All Cited By



INDEX TERMS

 1. Survey of graph database models
    
    1. Computer systems organization
       
       1. Architectures
          
          1. Other architectures
             
             1. Heterogeneous (hybrid) systems
    
    2. Information systems
       
       1. Data management systems
          
          1. Database design and models
             
             1. Data model extensions
          
          2. Database management system engines
          
          3. Information integration
             
             1. Extraction, transformation and loading
          
          4. Query languages
       
       2. Information systems applications
    
    3. Mathematics of computing
       
       1. Discrete mathematics
          
          1. Graph theory
             
             1. Graph enumeration
             
             2. Hypergraphs
             
             3. Network flows
             
             4. Paths and connectivity problems
    
    4. Theory of computation
       
       1. Design and analysis of algorithms
          
          1. Graph algorithms analysis
             
             1. Network flows
       
       2. Theory and algorithms for application domains
          
          1. Database theory
             
             1. Database query languages (principles)




RECOMMENDATIONS

 * DEMYSTIFYING GRAPH DATABASES: ANALYSIS AND TAXONOMY OF DATA ORGANIZATION,
   SYSTEM DESIGNS, AND GRAPH QUERIES
   
   Numerous irregular graph datasets, for example social networks or web graphs,
   may contain even trillions of edges. Often, their structure changes over time
   and they have domain-specific rich data associated with vertices and edges.
   Graph database systems ...
   
   Read More

 * A GRAPH-ORIENTED OBJECT DATABASE MODEL
   
   A graph-oriented object database model (GOOD) is introduced as a theoretical
   basis for database systems in which manipulation as well as conceptual
   representation of data is transparently graph-based. In the GOOD model, the
   scheme as well as the ...
   
   Read More

 * IBM RELATIONAL DATABASE SYSTEMS: THE EARLY YEARS
   
   The relational data model, proposed by E.F. Codd in 1970, inspired several
   research projects at IBM and elsewhere. Among these was System R, which
   demonstrated the commercial viability of relational database systems. This
   article describes the research ...
   
   Read More




COMMENTS


Please enable JavaScript to view thecomments powered by Disqus.


LOGIN OPTIONS

Check if you have access through your login credentials or your institution to
get full access on this article.

Sign in


FULL ACCESS

Get this Article
 * Information
 * Contributors


 * PUBLISHED IN
   
   ACM Computing Surveys  Volume 40, Issue 1
   February 2008
   172 pages
   ISSN:0360-0300
   EISSN:1557-7341
   DOI:10.1145/1322432
   Issue’s Table of Contents
   
   
   Copyright © 2008 ACM
   
   Permission to make digital or hard copies of all or part of this work for
   personal or classroom use is granted without fee provided that copies are not
   made or distributed for profit or commercial advantage and that copies bear
   this notice and the full citation on the first page. Copyrights for
   components of this work owned by others than ACM must be honored. Abstracting
   with credit is permitted. To copy otherwise, or republish, to post on servers
   or to redistribute to lists, requires prior specific permission and/or a fee.
   Request permissions from Permissions@acm.org
   
   
   SPONSORS
   
   
   IN-COOPERATION
   
   
   PUBLISHER
   
   Association for Computing Machinery
   
   New York, NY, United States
   
   
   PUBLICATION HISTORY
   
    * Published: 22 February 2008
    * Accepted: 1 May 2007
    * Revised: 1 October 2006
    * Received: 1 November 2005
   
   Published in csur Volume 40, Issue 1
   
   
   PERMISSIONS
   
   Request permissions about this article.
   
   Request Permissions
   
   
   CHECK FOR UPDATES
   
   
   AUTHOR TAGS
   
    * Database systems
    * database models
    * graph database models
    * graph databases
    * graph integrity constraints
    * graph query languages
   
   
   QUALIFIERS
   
    * research-article
    * Research
    * Refereed
   
   
   CONFERENCE
   
   
   FUNDING SOURCES
   
    * Millenium Nucleus, Center for Wed Research


 * OTHER METRICS
   
   View Article Metrics

 * Bibliometrics
 * Citations633


 * ARTICLE METRICS
   
    * 633
      Total Citations
      View Citations
    * 17,463
      Total Downloads
   
    * Downloads (Last 12 months)882
    * Downloads (Last 6 weeks)107
   
   
   OTHER METRICS
   
   View Author Metrics


 * CITED BY
   
   View all


PDF FORMAT

View or Download as a PDF file.

PDF


EREADER

View online with eReader.

eReader


DIGITAL EDITION

View this article in digital edition.

View Digital Edition
 1.   Abiteboul, S. 1997. Querying semi-structured data. In Proceedings of the
      6th International Conference on Database Theory (ICDT). LNCS, vol. 1186.
      Springer, 1--18. Google ScholarDigital Library
 2.   Abiteboul, S. and Hull, R. 1984. IFO: A formal semantic database model. In
      Proceedings of the 3th Symposium on Principles of Database Systems (PODS).
      ACM Press, 119--132. Google ScholarDigital Library
 3.   Abiteboul, S., Quass, D., McHugh, J., Widom, J., and Wiener, J. L. 1997.
      The Lorel query language for semistructured data. Int. J. Dig. Libr. 1, 1,
      68--88.Google ScholarCross Ref
 4.   Abiteboul, S. and Vianu, V. 1997. Queries and computation on the Web. In
      Proceedings of the 6th International Conference on Database Theory (ICDT).
      LNCS, vol. 1186. Springer, 262--275. Google ScholarDigital Library
 5.   Agrawal, R. and Jagadish, H. V. 1988. Efficient search in very large
      databases. In Proceedings of the 14th International Conference on Very
      Large Data Bases (VLDB). Morgan Kaufmann, 407--418. Google ScholarDigital
      Library
 6.   Agrawal, R. and Jagadish, H. V. 1989. Materialization and incremental
      update of path information. In Proceedings of the 5th International
      Conference on Data Engineering (ICDE). IEEE Computer Society, 374--383.
      Google ScholarDigital Library
 7.   Agrawal, R. and Jagadish, H. V. 1994. Algorithms for searching massive
      graphs. IEEE Trans. Knowl. Data Eng. 6, 2, 225--238. Google ScholarDigital
      Library
 8.   Albert, R. and Barabási, A.-L. 2002. Statistical mechanics of complex
      networks. Rev. Mod. Phy. 74, 47.Google ScholarCross Ref
 9.   Alechina, N., Demri, S., and de Rijke, M. 2003. A modal perspective on
      path constraints. J. Logic Computation 13, 6, 939--956.Google ScholarCross
      Ref
 10.  Amann, B. and Scholl, M. 1992. Gram: A Graph Data Model and Query
      Language. In European Conference on Hypertext Technology (ECHT). ACM,
      201--211. Google ScholarDigital Library
 11.  Andries, M. and Engels, G. 1993. A hybrid query language for an extended
      entity-relationship model. Tech. Rep. TR 93-15, Institute of Advanced
      Computer Science, Universiteit Leiden. May.Google Scholar
 12.  Andries, M., Gemis, M., Paredaens, J., Thyssens, I., and den Bussche, J.
      V. 1992. Concepts for graph-oriented object manipulation. In Proceedings
      of the 3rd International Conference on Extending Database Technology
      (EDBT). LNCS, vol. 580. Springer, 21--38. Google ScholarDigital Library
 13.  Angles, R. and Gutierrez, C. 2005. Querying RDF data from a graph database
      perspective. In Proceedings of the 2nd European Semantic Web Conference
      (ESWC). Number 3532 in LNCS. 346--360. Google ScholarDigital Library
 14.  Aufaure-Portier, M.-A. and Trépied, C. 1976. A survey of query languages
      for geographic information systems. In Proceedings of the 3rd
      International Workshop on Interfaces to Databases. 431--438.Google Scholar
 15.  Azmoodeh, M. and Du, H. 1988. GQL, A graphical query language for semantic
      databases. In Proceedings of the 4th International Conference on
      Scientific and Statistical Database Management (SSDBM). LNCS, vol. 339.
      Springer, 259--277. Google ScholarDigital Library
 16.  Beeri, C. 1988. Data models and languages for databases. In Proceedings of
      the 2nd International Conference on Database Theory (ICDT). LNCS, vol.
      326. Springer, 19--40. Google ScholarDigital Library
 17.  Benkö, G., Flamm, C., and Stadler, P. F. 2003. A graph-based toy model of
      chemistry. J. Chem. Inform. Computer Science (JCISD) 43, 1 (Jan),
      1085--1093.Google Scholar
 18.  Berge, C. 1973. Graphs and Hypergraphs. North-Holland, Amsterdam. Google
      ScholarDigital Library
 19.  Brandes, U. 2005. Network Analysis. Number 3418 in LNCS.
      Springer-Verlag.Google Scholar
 20.  Bray, T., Paoli, J., and Sperberg-McQueen, C. M. 1998. Extensible Markup
      Language (XML) 1.0, W3C Recommendation 10, (February).
      http://www.w3.org/TR/1998/REC-xml-19980210. Google ScholarDigital Library
 21.  Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata,
      R., Tomkins, A., and Wiener, J. 2000. Graph structure in the Web. In
      Proceedings of the 9th International World Wide Web conference on Computer
      Networks: The International Journal of Computer and Telecommunications
      Networking. North-Holland Publishing Co., 309--320. Google ScholarDigital
      Library
 22.  Buneman, P. 1997. Semistructured data. In Proceedings of the 16th
      Symposium on Principles of Database Systems (PODS). ACM Press, 117--121.
      Google ScholarDigital Library
 23.  Buneman, P., Davidson, S., Hillebrand, G., and Suciu, D. 1996. A query
      language and optimization techniques for unstructured data. SIGMOD Record.
      25, 2, 505--516. Google ScholarDigital Library
 24.  Buneman, P., Fan, W., and Weinstein, S. 1998. Path constraints in
      semistructured and structured databases. In Proceedings of the 17th
      Symposium on Principles of Database Systems (PODS). ACM Press, 129-- 138.
      Google ScholarDigital Library
 25.  Cardelli, L., Gardner, P., and Ghelli, G. 2002. A spatial logic for
      querying graphs. In Proceedings of the 29th International Colloquium on
      Automata, Languages, and Programming (ICALP). LNCS. Springer, 597--610.
      Google ScholarDigital Library
 26.  Chandra, A. K. 1988. Theory of database queries. In Proceedings of the 7th
      Symposium on Principles of Database Systems (PODS). ACM Press, 1--9.
      Google ScholarDigital Library
 27.  Chen, P. P.-S. 1976. The entity-relationship model---toward a unified view
      of data. ACM Trans. Database Syst. 1, 1, 9--36. Google ScholarDigital
      Library
 28.  Chomicki, J. 1994. Temporal query languages: a survey. In Proceedings of
      the First International Conference on Temporal Logic (ICTL).
      Springer-Verlag, 506--534. Google ScholarDigital Library
 29.  Codd, E. F. 1970. A relational model of data for large shared data banks.
      Commun. ACM 13, 6, 377-- 387. Google ScholarDigital Library
 30.  Codd, E. F. 1980. Data models in database management. In Proceedings of
      the 1980 Workshop on Data abstraction, Databases, and Conceptual Modeling.
      ACM Press, 112--114. Google ScholarDigital Library
 31.  Codd, E. F. 1983. A relational model of data for large shared data banks.
      Commun. ACM 26, 1, 64--69. Google ScholarDigital Library
 32.  Conklin, J. 1987. Hypertext: An introduction and survey. IEEE Comput. 20,
      9, 17--41. Google ScholarDigital Library
 33.  Consens, M. and Mendelzon, A. 1993. Hy&plus;: A hygraph-based query and
      visualization system. SIGMOD Record 22, 2, 511--516. Google ScholarDigital
      Library
 34.  Consens, M. P. and Mendelzon, A. O. 1989. Expressing structural hypertext
      queries in graphlog. In Proceedings of the 2th Conference on Hypertext.
      ACM Press, 269--292. Google ScholarDigital Library
 35.  Cruz, I. F., Mendelzon, A. O., and Wood, P. T. 1987. A graphical query
      language supporting recursion. In Proceedings of the Association for
      Computing Machinery Special Interest Group on Management of Data. ACM
      Press, 323--330. Google ScholarDigital Library
 36.  Cruz, I. F., Mendelzon, A. O., and Wood, P. T. 1989. G&plus;: recursive
      queries without recursion. In Proceedings of the 2th International
      Conference on Expert Database Systems (EDS). Addison-Wesley, 645--
      666.Google Scholar
 37.  Date, C. J. 1981. Referential integrity. In Proceedings of the 7th
      International Conference on Very Large Data Bases (VLDB). IEEE Computer
      Society, 2--12. Google ScholarDigital Library
 38.  de S. Price, D. J. 1965. Networks of scientific papers. Science 149,
      510--515.Google ScholarCross Ref
 39.  Deng, Y. and Chang, S.-K. 1990. A G-Net model for knowledge representation
      and reasoning. IEEE Trans. Knowl. Data Eng. 2, 3 (Dec), 295--310. Google
      ScholarDigital Library
 40.  Deville, Y., Gilbert, D., van Helden, J., and Wodak, S. J. 2003. An
      overview of data models for the analysis of biochemical pathways. In
      Proceedings of the First International Workshop on Computational Methods
      in Systems Biology. Springer-Verlag, 174. Google ScholarDigital Library
 41.  Dorogovtsev, S. N. and Mendes, J. F. F. 2003. Evolution of Networks---From
      Biological Nets to the Internet and WWW. Oxford University Press. Google
      ScholarDigital Library
 42.  Fernández, M., Florescu, D., Kang, J., Levy, A., and Suciu, D. 1998.
      Catching the boat with strudel: experiences with a Web-site management
      system. In Proceedings of the 1998 ACM SIGMOD International Conference on
      Management of Data. ACM Press, 414--425. Google ScholarDigital Library
 43.  Flesca, S. and Greco, S. 1999. Partially ordered regular languages for
      graph queries. In Proceedings of the 26th International Colloquium on
      Automata, Languages and Programming (ICALP). LNCS, vol. 1644. Springer,
      321--330. Google ScholarDigital Library
 44.  Flesca, S. and Greco, S. 2000. Querying graph databases. In Proceedings of
      the 7th International Conference on Extending Database
      Technology---Advances in Database Technology (EDBT). LNCS, vol. 1777.
      Springer, 510--524. Google ScholarDigital Library
 45.  Florescu, D., Levy, A., and Mendelzon, A. O. 1998. Database techniques for
      the World-Wide Web: A survey. SIGMOD Record 27, 3, 59--74. Google
      ScholarDigital Library
 46.  Fry, J. P. and Sibley, E. H. 1976. Evolution of data-base management
      systems. ACM Comput. Surv. 8, 1. Google ScholarDigital Library
 47.  Furche, T., Linse, B., Bry, F., Plexousakis, D., and Gottlob, G. 2006. RDF
      querying: language constructs and evaluation methods compared. In
      Reasoning Web. Number 4126 in LNCS. 1--52.Google Scholar
 48.  Gemis, M. and Paredaens, J. 1993. An object-oriented pattern matching
      language. In Proceedings of the First JSSST International Symposium on
      Object Technologies for Advanced Software. Springer-Verlag, 339--355.
      Google ScholarDigital Library
 49.  Gemis, M., Paredaens, J., Thyssens, I., and den Bussche, J. V. 1993. GOOD:
      A graph-oriented object database system. In Proceedings of the 1993 ACM
      SIGMOD International Conference on Management of Data. ACM Press,
      505--510. Google ScholarDigital Library
 50.  Giugno, R. and Shasha, D. 2002. GraphGrep: A fast and universal method for
      querying graphs. In Proceedings of the IEEE International Conference in
      Pattern recognition (ICPR).Google Scholar
 51.  Graves, M. Graph data models for genomics. http://www.xweave.com/people/in
      graaves/pubs.Google Scholar
 52.  Graves, M. 1993. Theories and tools for designing application-specific
      knowledge base data models. Ph.D. dissertation, University of Michigan.
      Google ScholarDigital Library
 53.  Graves, M., Bergeman, E. R., and Lawrence, C. B. 1994. Querying a genome
      database using graphs. In Proceedings of the 3th International Conference
      on Bioinformatics and Genome Research.Google Scholar
 54.  Graves, M., Bergeman, E. R., and Lawrence, C. B. 1995a. A graph-theoretic
      data model for genome mapping databases. In Proceedings of the 28th Hawaii
      International Conference on System Sciences (HICSS). IEEE Computer
      Society, 32. Google ScholarDigital Library
 55.  Graves, M., Bergeman, E. R., and Lawrence, C. B. 1995b. Graph database
      systems for genomics. IEEE Eng. Medicine Biol. Special issue on Managing
      Data for the Human Genome Project 11, 6.Google Scholar
 56.  Griffith, R. L. 1982. Three principles of representation for semantic
      networks. ACM Trans. Database Syst. 7, 3, 417--442. Google ScholarDigital
      Library
 57.  Guha, R.V., Lassila, O., Miller, E., and Brickley, D. 1998. Enabling
      inferencing. The Query Languages Workshop (QL).Google Scholar
 58.  Gutiérrez, A., Pucheral, P., Steffen, H., and Thévenin, J.-M. 1994.
      Database graph views: A practical model to manage persistent graphs. In
      Proceedings of the 20th International Conference on Very Large Data Bases
      (VLDB). Morgan Kaufmann, 391--402. Google ScholarDigital Library
 59.  Güting, R. H. 1994. GraphDB: modeling and querying graphs in databases. In
      Proceedings of the 20th International Conference on Very Large Data Bases
      (VLDB). Morgan Kaufmann, 297--308. Google ScholarDigital Library
 60.  Gyssens, M., Paredaens, J., den Bussche, J. V., and Gucht, D. V. 1990a. A
      graph-oriented object database model. In Proceedings of the 9th Symposium
      on Principles of Database Systems (PODS). ACM Press, 417--424. Google
      ScholarDigital Library
 61.  Gyssens, M., Paredaens, J., den Bussche, J. V., and Gucht, D. V. 1991. A
      graph-oriented object database model. Tech. Rep. 91-27, University of
      Antwerp (UIA), Belgium. (March).Google Scholar
 62.  Gyssens, M., Paredaens, J., and Gucht, D. V. 1990b. A graph-oriented
      object model for database end-user interfaces. In Proceedings of the 1990
      ACM SIGMOD International Conference on Management of Data. ACM Press,
      24--33. Google ScholarDigital Library
 63.  Hammer, J. and Schneider, M. 2004. The GenAlg project: developing a new
      integrating data model, language, and tool for managing and querying
      genomic information. SIGMOD Record 33, 2, 45--50. Google ScholarDigital
      Library
 64.  Hammer, M. and McLeod, D. 1978. The semantic data model: a modelling
      mechanism for data base applications. In Proceedings of the 1978 ACM
      SIGMOD International Conference on Management of Data. ACM, 26--36. Google
      ScholarDigital Library
 65.  Hanneman, R. A. 2001. Introduction to social network methods. Tech. Rep.,
      Department of Sociology, University of California, Riverside.Google
      Scholar
 66.  Hayes, J. and Gutierrez, C. 2004. Bipartite graphs as intermediate model
      for RDF. In Proceedings of the 3th International Semantic Web Conference
      (ISWC). Number 3298 in LNCS. Springer-Verlag, 47--61.Google Scholar
 67.  Heuer, A. and Scholl, M. H. 1991. Principles of object-oriented query
      languages. In Datenbanksysteme in Büro, Technik und Wissenschaft (BTW).
      Informatik-Fachberichte, vol. 270. Springer, 178--197.Google Scholar
 68.  Hidders, J. 2001. A graph-based update language for object-oriented data
      models. Ph.D. dissertation, Technische Universiteit Eindhoven.Google
      Scholar
 69.  Hidders, J. 2002. Typing graph-manipulation operations. In Proceedings of
      the 9th International Conference on Database Theory (ICDT).
      Springer-Verlag, 394--409. Google ScholarDigital Library
 70.  Hidders, J. and Paredaens, J. 1993. GOAL, A graph-based object and
      association language. Advances in Database Systems: Implementations and
      Applications, CISM, 247--265.Google Scholar
 71.  Hull, R. and King, R. 1987. Semantic database modeling: Survey,
      applications, and research issues. ACM Comput. Surv. 19, 3, 201--260.
      Google ScholarDigital Library
 72.  ISO. 1999. International Standard ISO/IEC 13250 Topic Maps.Google Scholar
 73.  Jagadish, H. V. and Olken, F. 2003. Data management for the biosciences:
      report of the NLM Workshop on Data Management for Molecular and Cell
      Biology. Tech. Rep. LBNL-52767, National Library of Medicine.Google
      Scholar
 74.  Kerschberg, L., Klug, A. C., and Tsichritzis, D. 1976. A taxonomy of data
      models. In Proceedings of Systems for Large Data Bases (VLDB). North
      Holland and IFIP, 43--64. Google ScholarDigital Library
 75.  Kiesel, N., Schurr, A., and Westfechtel, B. 1996. GRAS: A graph-oriented
      software engineering database system. In IPSEN Book. 397--425. Google
      ScholarDigital Library
 76.  Kifer, M., Kim, W., and Sagiv, Y. 1992. Querying object-oriented
      databases. In Proceedings of the 1992 ACM SIGMOD International Conference
      on Management of Data. ACM Press, 393--402. Google ScholarDigital Library
 77.  Kim, W. 1990. Object-oriented databases: definition and research
      directions. IEEE Trans. Knowl. Data Eng. 2, 3, 327--341. Google
      ScholarDigital Library
 78.  Klyne, G. and Carroll, J. 2004. Resource description framework (RDF)
      concepts and abstract syntax.
      http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.Google Scholar
 79.  Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., and
      Upfal, E. 2000. The Web as a graph. In Proceedings of the 19th Symposium
      on Principles of Database Systems (PODS). ACM Press, 1--10. Google
      ScholarDigital Library
 80.  Kunii, H. S. 1987. DBMS with graph data model for knowledge handling. In
      Proceedings of the 1987 Fall Joint Computer Conference on Exploring
      technology: Today and Tomorrow. IEEE Computer Society Press, 138--142.
      Google ScholarDigital Library
 81.  Kuper, G. M. and Vardi, M. Y. 1984. A new approach to database logic. In
      Proceedings of the 3th Symposium on Principles of Database Systems (PODS).
      ACM Press, 86--96. Google ScholarDigital Library
 82.  Kuper, G. M. and Vardi, M. Y. 1993. The Logical Data Model. ACM Trans.
      Database Syst. 18, 3, 379-- 413. Google ScholarDigital Library
 83.  Langou, B. and Mainguenaud, M. 1994. Graph data model operations for
      network facilities in a geographical information system. In Proceedings of
      the 6th International Symposium on Spatial Data Handling. Vol. 2.
      1002--1019.Google Scholar
 84.  Lécluse, C., Richard, P., and Vélez, F. 1988. O2, an object-oriented data
      model. In Proceedings of the ACM SIGMOD International Conference on
      Management of Data. ACM Press, 424--433. Google ScholarDigital Library
 85.  Levene, M. and Loizou, G. 1995. A graph-based data model and its
      ramifications. IEEE Trans. Knowl. Data Eng. 7, 5, 809--823. Google
      ScholarDigital Library
 86.  Levene, M. and Poulovassilis, A. 1990. The Hypernode model and its
      associated query language. In Proceedings of the 5th Jerusalem Conference
      on Information technology. IEEE Computer Society Press, 520--530. Google
      ScholarDigital Library
 87.  Levene, M. and Poulovassilis, A. 1991. An object-oriented data model
      formalised through hypergraphs. Data Knowl. Eng. 6, 3, 205--224. Google
      ScholarDigital Library
 88.  Mainguenaud, M. 1992. Simatic XT: A data model to deal with multi-scaled
      networks. Comput. Environ. Urban Syst. 16, 281--288.Google ScholarCross
      Ref
 89.  Mainguenaud, M. 1995. Modelling the network component of geographical
      information systems. Int. J. Geog. Inform. Syst. 9, 6, 575--593.Google
      ScholarCross Ref
 90.  Mannino, M. V. and Shapiro, L. D. 1990. Extensions to query languages for
      graph traversal problems. IEEE Trans. Knowl. Data Eng. 2, 3, 353--363.
      Google ScholarDigital Library
 91.  McGee, W. C. 1976. On user criteria for data model evaluation. ACM Trans.
      Database Syst. 1, 4, 370--387. Google ScholarDigital Library
 92.  McGuinness, D. L. and van Harmelen, F. 2004. OWL Web ontology language
      overview, W3C recommendation 10 (February).
      http://www.w3.org/TR/2004/REC-owl-features-20040210/.Google Scholar
 93.  Medeiros, C. B. and Pires, F. 1994. Databases for GIS. SIGMOD Record 23, 1
      (March), 107--115. Google ScholarDigital Library
 94.  Mendelzon, A. O. and Wood, P. T. 1989. Finding regular simple paths in
      graph databases. In Proceedings of the 15th International Conference on
      Very Large Data Bases (VLDB). Morgan Kaufmann Publishers Inc., 185--193.
      Google ScholarDigital Library
 95.  Navathe, S. B. 1992. Evolution of data modeling for databases.
      Communications of the ACM 35, 9, 112--123. Google ScholarDigital Library
 96.  Nejdl, W., Siberski, W., and Sintek, M. 2003. Design issues and challenges
      for RDF- and schema-based peer-to-peer systems. SIGMOD Record 32, 3,
      41--46. Google ScholarDigital Library
 97.  Newman, M. E. J. 2003. The structure and function of complex networks.
      SIAM Rev. 45, 2, 167--256.Google ScholarDigital Library
 98.  Olken, F. 2003. Tutorial on graph data management for biology. IEEE
      Computer Society Bioinformatics Conference (CSB).Google Scholar
 99.  Papakonstantinou, Y., Garcia-Molina, H., and Widom, J. 1995. Object
      exchange across heterogeneous information sources. In Proceedings of the
      11th International Conference on Data Engineering (ICDE). IEEE Computer
      Society, 251--260. Google ScholarDigital Library
 100. Paredaens, J. and Kuijpers, B. 1998. Data models and query languages for
      spatial databases. Data & Knowledge Engineering (DKE) 25, 1--2, 29--53.
      Google ScholarDigital Library
 101. Paredaens, J., Peelman, P., and Tanca, L. 1995. G-Log: A graph-based query
      language. IEEE Trans. Knowl. Data Eng. 7, 3, 436--453. Google
      ScholarDigital Library
 102. Peckham, J. and Maryanski, F. J. 1988. Semantic data models. ACM Comput.
      Surv. 20, 3, 153--189. Google ScholarDigital Library
 103. Pepper, S. and Moore, G. 2001. XML topic maps (XTM) 1.0---TopicMaps.Org
      Specification. http://www.topicmaps.org/xtm/1.0/xtm1-20010806.html.Google
      Scholar
 104. Poulovassilis, A. and Hild, S. G. 2001. Hyperlog: A graph-based system for
      database browsing, querying, and update. IEEE Trans. Knowl. Data Eng. 13,
      2, 316--333. Google ScholarDigital Library
 105. Poulovassilis, A. and Levene, M. 1994. A nested-graph model for the
      representation and manipulation of complex objects. ACM Trans. Inform.
      Syst. 12, 1, 35--68. Google ScholarDigital Library
 106. Prud'hommeaux, E. and Seaborne, A. 2005. SPARQL Query Language for RDF,
      W3C Working Draft 21 July.
      http://www.w3.org/TR/2005/WD-rdf-sparql-query-20050721/.Google Scholar
 107. Ramakrishnan, R. and Ullman, J. D. 1993. A survey of research on deductive
      database systems. J. Logic Prog. 23, 2, 125--149.Google ScholarCross Ref
 108. Roussopoulos, N. and Mylopoulos, J. 1975. Using semantic networks for
      database management. In Proceedings of the International Conference on
      Very Large Data Bases (VLDB). ACM, 144--172. Google ScholarDigital Library
 109. Samet, H. and Aref, W. G. 1995. Spatial data models and query processing.
      In Modern Database Systems. 338--360. Google ScholarDigital Library
 110. Schewe, K.-D., Thalheim, B., Schmidt, J. W., and Wetzel, I. 1993.
      Integrity enforcement in object-oriented databases. In Proceedings of the
      4th International Workshop on Foundations of Models and Languages for Data
      and Objects. Google ScholarDigital Library
 111. Shasha, D., Wang, J. T. L., and Giugno, R. 2002. Algorithmics and
      applications of tree and graph searching. In Proceedings of the 21th
      Symposium on Principles of Database Systems (PODS). ACM Press, 39-- 52.
      Google ScholarDigital Library
 112. Shekhar, S., Coyle, M., Goyal, B., Liu, D.-R., and Sarkar, S. 1997. Data
      models in geographic information systems. Commun. ACM 40, 4, 103--111.
      Google ScholarDigital Library
 113. Sheng, L., Ozsoyoglu, Z. M., and Ozsoyoglu, G. 1999. A graph query
      language and its query processing. In Proceedings of the 15th
      International Conference on Data Engineering (ICDE). IEEE Computer
      Society, 572--581. Google ScholarDigital Library
 114. Sheth, A., Aleman-Meza, B., Arpinar, I. B., Halaschek-Wiener, C.,
      Ramakrishnan, C., Bertram, C., Warke, Y., Avant, D., Arpinar, F. S.,
      Anyanwu, K., and Kochut, K. 2005. Semantic association identification and
      knowledge discovery for national security applications. J. Database Manag.
      16, 1 (Jan-March), 33--53.Google ScholarCross Ref
 115. Shipman, D. W. 1981. The functional data model and the data language
      DAPLEX. ACM Trans. Database Syst. 6, 1, 140--173. Google ScholarDigital
      Library
 116. Silberschatz, A., Korth, H. F., and Sudarshan, S. 1996. Data models. ACM
      Comput. Surv. 28, 1, 105--108. Google ScholarDigital Library
 117. Sowa, J. F. 1976. Conceptual graphs for a database interface. IBM J. Res.
      Devel. 20, 4, 336--357.Google ScholarDigital Library
 118. Sowa, J. F. 1984. Conceptual Structures: Information Processing in Mind
      and Machine. Reading, MA, Addison-Wesley. Google ScholarDigital Library
 119. Sowa, J. F. 1991. Principles of Semantic Networks: Explorations in the
      Representation of Knowledge. Morgan Kaufmann Publishers.Google Scholar
 120. Stein, L. D. and Tierry-Mieg, J. 1999. AceDB: A genome database management
      system. Comput. Sci. Eng. 1, 3, 44--52.Google ScholarDigital Library
 121. Tansel, A., Clifford, J., Gadia, S., Jajodia, S., Segev, A., and
      Snodgrass, R. T., Eds. 1993. Temporal Databases: Theory, Design, and
      Implementation. Benjamin-Cummings. Google ScholarDigital Library
 122. Taylor, R. W. and Frank, R. L. 1976. CODASYL data-base management systems.
      ACM Comput. Surv. 8, 1, 67--103. Google ScholarDigital Library
 123. Thalheim, B. 1991. Dependencies in Relational Databases. Leipzig, Teubner
      Verlag.Google Scholar
 124. Thalheim, B. 1996. An overview on semantical constraints for database
      models. In Proceedings of the 6th International Conference Intellectual
      Systems and Computer Science.Google Scholar
 125. Tompa, F. W. 1989. A data model for flexible hypertext database systems.
      ACM Trans. Inform. Syst. 7, 1, 85--100. Google ScholarDigital Library
 126. Tsichritzis, D. C. and Lochovsky, F. H. 1976. Hierarchical data-base
      management: A survey. ACM Comput. Surv. 8, 1, 105--123. Google
      ScholarDigital Library
 127. Tsvetovat, M., Diesner, J., and Carley, K. 2004. NetIntel: A database for
      manipulation of rich social network data. Tech. Rep. CMU-ISRI-04-135,
      Carnegie Mellon University, School of Computer Science, Institute for
      Software Research International.Google Scholar
 128. Tuv, E., Poulovassilis, A., and Levene, M. 1992. A storage manager for the
      hypernode model. In Proceedings of the 10th British National Conference on
      Databases. Number 618 in LNCS. Springer-Verlag, 59--77. Google
      ScholarDigital Library
 129. Vardi, M. Y. 1982. The complexity of relational query languages (extended
      abstract). In Proceedings of the 14th ACM Symposium on Theory of Computing
      (STOC). ACM Press, 137--146. Google ScholarDigital Library
 130. Vassiliadis, P. and Sellis, T. 1999. A survey of logical models for OLAP
      Databases. SIGMOD Record 28, 4, 64--69. Google ScholarDigital Library
 131. Vianu, V. 2003. A Web odyssey: From Codd to XML. SIGMOD Record 32, 2,
      68--77. Google ScholarDigital Library
 132. Watters, C. and Shepherd, M. A. 1990. A transient hypergraph-based model
      for data access. ACM Trans. Inform. Syst. 8, 2, 77--102. Google
      ScholarDigital Library
 133. Weddell, G. E. 1992. Reasoning about functional dependencies generalized
      for semantic data models. ACM Trans. Database Syst. 17, 1, 32--64. Google
      ScholarDigital Library
 134. Wellman, B., Salaff, J., Dimitrova, D., Garton, L., Gulia, M., and
      Haythornthwaite, C. 1996. Computer networks as social networks:
      collaborative work,telework, and virtual community. Ann. Rev. Sociol. 22,
      213--238.Google ScholarCross Ref
 135. Yannakakis, M. 1990. Graph-theoretic methods in database theory. In
      Proceedings of the 9th Symposium on Principles of Database Systems (PODS).
      ACM Press, 230--242. Google ScholarDigital Library
 136. Zicari, R. 1991. A framework for schema updates in an object-oriented
      database system. In Proceedings of the 7th International Conference on
      Data Engineering (ICDE). IEEE Computer Society, 2--13. Google
      ScholarDigital Library

 * Figures
 * Other

 * None
 * 




SHARE THIS PUBLICATION LINK

https://dl.acm.org/doi/10.1145/1322432.1322433

Copy Link


SHARE ON SOCIAL MEDIA


Share on
 * X
 * LinkedIn
 * Reddit
 * Facebook
 * Email
   
   

 * 
 * 
 * 
 * 136References
 * 
 * 
 * 


Close Figure Viewer



Browse AllReturnChange zoom level


CAPTION


View Issue’s Table of Contents
back

Close modal


NEW CITATION ALERT ADDED!

This alert has been successfully added and will be sent to:

You will be notified whenever a record that you have chosen has been cited.

To manage your alert preferences, click on the button below.

Manage my Alerts
Close modal


NEW CITATION ALERT!

Please log in to your account

Close modal


EXPORT CITATIONS

Select Citation formatBibTeXEndNoteACM Ref
 * Please download or close your previous search result export first before
   starting a new bulk export.
   Preview is not available.
   By clicking download,a status dialog will open to start the export process.
   The process may takea few minutes but once it finishes a file will be
   downloadable from your browser. You may continue to browse the DL while the
   export process is in progress.
   Download
 *  * Download citation
    * Copy citation


FOOTER




CATEGORIES

 * Journals
 * Magazines
 * Books
 * Proceedings
 * SIGs
 * Conferences
 * Collections
 * People


ABOUT

 * About ACM Digital Library
 * ACM Digital Library Board
 * Subscription Information
 * Author Guidelines
 * Using ACM Digital Library
 * All Holdings within the ACM Digital Library
 * ACM Computing Classification System
 * Digital Library Accessibility


JOIN

 * Join ACM
 * Join SIGs
 * Subscribe to Publications
 * Institutions and Libraries


CONNECT

 * Contact
 * Facebook
 * X
 * Linkedin
   
 * Feedback
 * Bug Report

The ACM Digital Library is published by the Association for Computing Machinery.
Copyright © 2024 ACM, Inc.
 * Terms of Usage
 * Privacy Policy
 * Code of Ethics



Your Search Results Download Request

We are preparing your search results for download ...

We will inform you here when the file is ready.

Download now!
Your Search Results Download Request

Your file of search results citations is now ready.

Download now!
Your Search Results Download Request

Your search export query has expired. Please try again.

✓
Danke für das Teilen!
AddToAny
Mehr…

Close crossmark popup