www.sciopen.com Open in urlscan Pro
101.200.80.64  Public Scan

Submitted URL: https://doi.org/10.26599/EMD.2023.9370005
Effective URL: https://www.sciopen.com/article/10.26599/EMD.2023.9370005
Submission: On November 06 via api from GB — Scanned from GB

Form analysis 0 forms found in the DOM

Text Content

EN
LOGIN REGISTER

×

LOGGING OFF

All data generated by the account on the platform will be deleted after logout.
Close Save
Journal Home > Volume 1 , Issue 1
Energy Materials and Devices 2023, 1(1): 9370005
https://doi.org/10.26599/EMD.2023.9370005
Review | Open Access | Issue | Published: 25 September 2023


DEVELOPING ARTIFICIAL SOLID-STATE INTERPHASE FOR LI METAL ELECTRODES: RECENT
ADVANCES AND PERSPECTIVE

Show Author's Information Hide Author's Information Yanyan Wang,  Mingnan Li, 
Fuhua Yang,  Jianfeng Mao,  Zaiping Guo( )

School of Chemical Engineering and Advanced Materials, The University of
Adelaide, Adelaide, South Australia 5005, Australia
Keywords:
interfaces, artificial SEI, Li metal electrode, high-energy-density batteries

Cite this article:
Wang Y, Li M, Yang F, et al. Developing artificial solid-state interphase for Li
metal electrodes: recent advances and perspective. Energy Materials and Devices,
2023, 1(1): 9370005. https://doi.org/10.26599/EMD.2023.9370005
Download citation
EndNote(RIS)
BibTeX


1006

Views

233

Downloads


Citations

0

Crossref

N/A

WoS

N/A

Scopus

N/A

CSCD

PDF (5.3 MB)


Abstract Full text About this article
Abstract

The failure of Li metal anodes can be attributed to their unstable
electrode/electrolyte interface, especially the continuous formation of solid
electrolyte interphase (SEI) and dendrite growth. To address this challenge,
scholars proposed the construction of artificial SEI (ASEI) as a promising
strategy. The ASEI mainly homogenizes the distribution of Li+, mitigates
dendrite growth, facilitates Li+ diffusion, and protects the Li metal anode from
electrolyte erosion. This review comprehensively summarizes the recent progress
in the construction of ASEI layers in terms of their chemical composition.
Fundamental understanding of the mechanisms, design principles, and functions of
the main components are analyzed. We also propose future research directions to
facilitate the in-depth study of ASEI and its practical applications in Li metal
batteries. This review offers perspectives that will greatly contribute to the
design of practical Li metal electrodes.


Full text

menu
Abstract
Full text
Outline

About this article


DEVELOPING ARTIFICIAL SOLID-STATE INTERPHASE FOR LI METAL ELECTRODES: RECENT
ADVANCES AND PERSPECTIVE

Show Author's information Hide Author's Information Yanyan Wang, Mingnan
Li, Fuhua Yang, Jianfeng Mao, Zaiping Guo( )

School of Chemical Engineering and Advanced Materials, The University of
Adelaide, Adelaide, South Australia 5005, Australia



ABSTRACT

The failure of Li metal anodes can be attributed to their unstable
electrode/electrolyte interface, especially the continuous formation of solid
electrolyte interphase (SEI) and dendrite growth. To address this challenge,
scholars proposed the construction of artificial SEI (ASEI) as a promising
strategy. The ASEI mainly homogenizes the distribution of Li+, mitigates
dendrite growth, facilitates Li+ diffusion, and protects the Li metal anode from
electrolyte erosion. This review comprehensively summarizes the recent progress
in the construction of ASEI layers in terms of their chemical composition.
Fundamental understanding of the mechanisms, design principles, and functions of
the main components are analyzed. We also propose future research directions to
facilitate the in-depth study of ASEI and its practical applications in Li metal
batteries. This review offers perspectives that will greatly contribute to the
design of practical Li metal electrodes.

Keywords: interfaces, artificial SEI, Li metal electrode, high-energy-density
batteries




REFERENCES(109)

[1]

Liu, Y. Y., Zhu, Y. Y., Cui, Y. (2019). Challenges and opportunities towards
fast-charging battery materials. Nat. Energy. 4, 540–550.

DOI Google Scholar
[2]

Albertus, P., Babinec, S., Litzelman, S., Newman, A. (2018). Status and
challenges in enabling the lithium metal electrode for high-energy and low-cost
rechargeable batteries. Nat. Energy. 3, 16–21.

DOI Google Scholar
[3]

Zhang, Y., Zuo, T. T., Popovic, J., Lim, K., Yin, Y. X., Maier, J., Guo, Y. G.
(2020). Towards better Li metal anodes: challenges and strategies. Mater. Today.
33, 56–74.

DOI Google Scholar
[4]

Wang, Z. J., Wang, Y. Y., Wu, C., Pang, W. K., Mao, J. F., Guo, Z. P. (2021).
Constructing nitrided interfaces for stabilizing Li metal electrodes in liquid
electrolytes. Chem. Sci. 12, 8945–8966.

DOI Google Scholar
[5]

Liu, B., Zhang, J. G., Xu, W. (2018). Advancing lithium metal batteries. Joule.
2, 833–845.

DOI Google Scholar
[6]

Zhang, W. C., Zhang, F. L., Liu, S. L., Pang, W. K., Lin, Z., Guo, Z. P., Chai,
L. Y. (2023). Regulating the reduction reaction pathways via manipulating the
solvation shell and donor number of the solvent in Li-CO2 chemistry. Proc. Natl.
Acad. Sci. USA. 120, e2219692120.

DOI Google Scholar
[7]

Liu, W., Oh, P., Liu, X. E., Lee, M. J., Cho, W., Chae, S., Kim, Y., Cho, J.
(2015). Nickel-rich layered lithium transition-metal oxide for high-energy
lithium-ion batteries. Angew. Chem. Int. Ed. 54, 4440–4457.

DOI Google Scholar
[8]

Liu, J., Bao, Z. N., Cui, Y., Dufek, E. J., Goodenough, J. B., Khalifah, P., Li,
Q. Y., Liaw, B. Y., Liu, P., Manthiram, A., et al. (2019). Pathways for
practical high-energy long-cycling lithium metal batteries. Nat. Energy. 4,
180–186.

DOI Google Scholar
[9]

Wang, Z. J., Wang, Y. Y., Li, B. H., Bouwer, J. C., Davey, K., Lu, J., Guo, Z.
P. (2022). Non-flammable ester electrolyte with boosted stability against Li for
high-performance Li metal batteries. Angew. Chem. Int. Ed. 61, e202206682.

DOI Google Scholar
[10]

Suo, L. M., Xue, W. J., Gobet, M., Greenbaum, S. G., Wang, C., Chen, Y. M.,
Yang, W. L., Li, Y. X., Li, J. (2018). Fluorine-donating electrolytes enable
highly reversible 5-V-class Li metal batteries. Proc. Natl. Acad. Sci. USA. 115,
1156–1161.

DOI Google Scholar
[11]

Xu, W., Wang, J. L., Ding, F., Chen, X. L., Nasybulin, E., Zhang, Y. H., Zhang,
J. G. (2014). Lithium metal anodes for rechargeable batteries. Energy Environ.
Sci. 7, 513–537.

DOI Google Scholar
[12]

Cheng, X. B., Zhang, R., Zhao, C. Z., Wei, F., Zhang, J. G., Zhang, Q. (2016). A
review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3,
1500213.

DOI Google Scholar
[13]

Cheng, X. B., Zhang, R., Zhao, C. Z., Zhang, Q. (2017). Toward safe lithium
metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473.

DOI Google Scholar
[14]

Fang, C. C., Li, J. X., Zhang, M. H., Zhang, Y. H., Yang, F., Lee, J. Z., Lee,
M. H., Alvarado, J., Schroeder, M. A., Yang, Y. Y. C., et al. (2019).
Quantifying inactive lithium in lithium metal batteries. Nature. 572, 511–515.

DOI Google Scholar
[15]

Lin, D. C., Liu, Y. Y., Cui, Y. (2017). Reviving the lithium metal anode for
high-energy batteries. Nat. Nanotechnol. 12, 194–206.

DOI Google Scholar
[16]

Adenusi, H., Chass, G. A., Passerini, S., Tian, K. V., Chen, G. H. (2023).
Lithium batteries and the solid electrolyte interphase (SEI)—progress and
outlook. Adv. Energy Mater. 13, 2203307.

DOI Google Scholar
[17]

Qutaish, H., Han, S. A., Rehman, Y., Konstantinov, K., Park, M. S., Ho Kim, J.
(2022). Porous carbon architectures with different dimensionalities for lithium
metal storage. Sci. Technol. Adv. Mater. 23, 169–188.

DOI Google Scholar
[18]

Peled, E., Menkin, S. (2017). Review—SEI: past, present and future. J.
Electrochem. Soc. 164, A1703–A1719.

DOI Google Scholar
[19]

Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable
batteries. Chem. Rev. 104, 4303–4418.

DOI Google Scholar
[20]

Wang, L. N., Menakath, A., Han, F. D., Wang, Y., Zavalij, P. Y., Gaskell, K. J.,
Borodin, O., Iuga, D., Brown, S. P., Wang, C. S., et al. (2019). Identifying the
components of the solid–electrolyte interphase in Li-ion batteries. Nat. Chem.
11, 789–796.

DOI Google Scholar
[21]

Yu, X. W., Manthiram, A. (2018). Electrode–electrolyte interfaces in
lithium-based batteries. Energy Environ. Sci. 11, 527–543.

DOI Google Scholar
[22]

Park, S., Chaudhary, R., Han, S. A., Qutaish, H., Moon, J., Park, M. S., Kim, J.
H. (2023). Ionic conductivity and mechanical properties of the solid electrolyte
interphase in lithium metal batteries. Energy Mater. 3, 300005.

DOI Google Scholar
[23]

Han, B., Zhang, Z., Zou, Y. C., Xu, K., Xu, G. Y., Wang, H., Meng, H., Deng, Y.
H., Li, J., Gu, M. (2021). Poor stability of Li2CO3 in the solid electrolyte
interphase of a lithium-metal anode revealed by cryo-electron microscopy. Adv.
Mater. 33, 2100404.

DOI Google Scholar
[24]

Andersson, A. M., Abraham, D. P., Haasch, R., MacLaren, S., Liu, J., Amine, K.
(2002). Surface characterization of electrodes from high power lithium-ion
batteries. J. Electrochem. Soc. 149, A1358.

DOI Google Scholar
[25]

Zhang, X., Yang, Y. A., Zhou, Z. (2020). Towards practical lithium-metal anodes.
Chem. Soc. Rev. 49, 3040–3071.

DOI Google Scholar
[26]

Zheng, X. Y., Cao, Z., Luo, W., Weng, S. T., Zhang, X. L., Wang, D. H., Zhu, Z.
L., Du, H. R., Wang, X. F., Qie, L. et al. (2023). Solvation and interfacial
engineering enable −40℃ operation of graphite/NCM batteries at energy density
over 270 Wh kg−1. Adv. Mater. 35, 2210115.

DOI Google Scholar
[27]

Fan, X. L., Wang, C. S. (2021). High-voltage liquid electrolytes for Li
batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566.

DOI Google Scholar
[28]

Wang, Z. J., Chen, C. S., Wang, D. N., Zhu, Y., Zhang, B. (2023). Stabilizing
interfaces in high-temperature NCM811-Li batteries via tuning terminal alkyl
chains of ether solvents. Angew. Chem. Int. Ed. 62, e202303950.

DOI Google Scholar
[29]

Huang, Y., Duan, J., Zheng, X. Y., Wen, J. Y., Dai, Y. M., Wang, Z. F., Luo, W.,
Huang, Y. H. (2020). Lithium metal-based composite: an emerging material for
next-generation batteries. Matter. 3, 1009–1030.

DOI Google Scholar
[30]

Lyu, T. Y., Luo, F. Q., Wang, D. C., Bu, L. Z., Tao, L., Zheng, Z. F. (2022).
Carbon/lithium composite anode for advanced lithium metal batteries: design,
progress, in situ characterization, and perspectives. Adv. Energy Mater. 12,
2201493.

DOI Google Scholar
[31]

Chen, H., Yang, Y. F., Boyle, D. T., Jeong, Y. K., Xu, R., de Vasconcelos, L.
S., Huang, Z. J., Wang, H. S., Wang, H. X., Huang, W. X., et al. (2021).
Free-standing ultrathin lithium metal–graphene oxide host foils with
controllable thickness for lithium batteries. Nat. Energy. 6, 790–798.

DOI Google Scholar
[32]

Zheng, Z. J., Ye, H., Guo, Z. P. (2020). Recent progress in designing stable
composite lithium anodes with improved wettability. Adv. Sci. 7, 2002212.

DOI Google Scholar
[33]

Meyerson, M. L., Papa, P. E., Heller, A., Mullins, C. B. (2021). Recent
developments in dendrite-free lithium-metal deposition through tailoring of
micro- and nanoscale artificial coatings. ACS Nano. 15, 29–46.

DOI Google Scholar
[34]

Xu, R., Cheng, X. B., Yan, C., Zhang, X. Q., Xiao, Y., Zhao, C. Z., Huang, J.
Q., Zhang, Q. (2019). Artificial interphases for highly stable lithium metal
anode. Matter. 1, 317–344.

DOI Google Scholar
[35]

Jiang, C., Ma, C., Yang, F., Cai, X. H., Liu, Y. J., Tao, X. Y. (2021).
Materials chemistry among the artificial solid electrolyte interphases of
metallic lithium anodes. Mater. Chem. Front. 5, 5194–5210.

DOI Google Scholar
[36]

Gao, R. M., Yang, H., Wang, C. Y., Ye, H., Cao, F. F., Guo, Z. P. (2021).
Fatigue-resistant interfacial layer for safe lithium metal batteries. Angew.
Chem. Int. Ed. 60, 25508–25513.

DOI Google Scholar
[37]

Lu, G. X., Nai, J. W., Luan, D. Y., Tao, X. Y., Lou, X. W. (2023). Surface
engineering toward stable lithium metal anodes. Sci. Adv. 9, eadf1550.

DOI Google Scholar
[38]

Kang, D. M., Xiao, M. Y., Lemmon, J. P. (2021). Artificial solid-electrolyte
interphase for lithium metal batteries. Batteries Supercaps. 4, 445–455.

DOI Google Scholar
[39]

Monroe, C., Newman, J. (2003). Dendrite growth in lithium/polymer systems: a
propagation model for liquid electrolytes under galvanostatic conditions. J.
Electrochem. Soc. 150, A1377–A1384.

DOI Google Scholar
[40]

Li, N. W., Yin, Y. X., Yang, C. P., Guo, Y. G. (2016). An artificial solid
electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28,
1853–1858.

DOI Google Scholar
[41]

Kozen, A. C., Lin, C. F., Pearse, A. J., Schroeder, M. A., Han, X. G., Hu, L.
B., Lee, S. B., Rubloff, G. W., Noked, M. (2015). Next-generation lithium metal
anode engineering via atomic layer deposition. ACS Nano. 9, 5884–5892.

DOI Google Scholar
[42]

Cui, C., Zhang, R. P., Fu, C. K., Xiao, R., Li, R. L., Ma, Y. L., Wang, J. J.,
Gao, Y. Z., Yin, G. P., Zuo, P. J. (2022). Stable lithium anode enabled by
biphasic hybrid SEI layer toward high-performance lithium metal batteries. Chem.
Eng. J. 433, 133570.

DOI Google Scholar
[43]

Liang, X., Pang, Q., Kochetkov, I. R., Sempere, M. S., Huang, H., Sun, X. Q.,
Nazar, L. F. (2017). A facile surface chemistry route to a stabilized lithium
metal anode. Nat. Energy. 2, 17119.

DOI Google Scholar
[44]

Chen, T., Meng, F. B., Zhang, Z. W., Liang, J. C., Hu, Y., Kong, W. H., Zhang,
X. L., Jin, Z. (2020). Stabilizing lithium metal anode by molecular beam epitaxy
grown uniform and ultrathin bismuth film. Nano Energy. 76, 105068.

DOI Google Scholar
[45]

Park, K., Goodenough, J. B. (2017). Dendrite-suppressed lithium plating from a
liquid electrolyte via wetting of Li3N. Adv. Energy Mater. 7, 1700732.

DOI Google Scholar
[46]

Wu, N., Li, Y. T., Dolocan, A., Li, W., Xu, H. H., Xu, B. Y., Grundish, N. S.,
Cui, Z. M., Jin, H. B., Goodenough, J. B. (2020). In situ formation of Li3P
layer enables fast Li+ conduction across li/solid polymer electrolyte interface.
Adv. Funct. Mater. 30, 2000831.

DOI Google Scholar
[47]

Di, J., Yang, J. L., Tian, H., Ren, P. F., Deng, Y. R., Tang, W. H., Yan, W. Q.,
Liu, R. P., Ma, J. M. (2022). Dendrites-free lithium metal anode enabled by
synergistic surface structural engineering. Adv. Funct. Mater. 32, 2200474.

DOI Google Scholar
[48]

Ma, Y., Wei, L., Gu, Y. T., Zhao, L., Jing, Y. X., Mu, Q. Q., Su, Y. H., Yuan,
X. Z., Peng, Y., Deng, Z. (2021). Insulative ion-conducting lithium selenide as
the artificial solid–electrolyte interface enabling heavy-duty lithium metal
operations. Nano Lett. 21, 7354–7362.

DOI Google Scholar
[49]

Li, Y. B., Sun, Y. M., Pei, A., Chen, K. F., Vailionis, A., Li, Y. Z., Zheng, G.
Y., Sun, J., Cui, Y. (2018). Robust pinhole-free Li3N solid electrolyte grown
from molten lithium. ACS Cent. Sci. 4, 97–104.

DOI Google Scholar
[50]

Chen, H., Pei, A., Lin, D. C., Xie, J., Yang, A. K., Xu, J. W., Lin, K. X.,
Wang, J. Y., Wang, H. S., Shi, F. F., et al. (2019). Uniform high ionic
conducting lithium sulfide protection layer for stable lithium metal anode. Adv.
Energy Mater. 9, 1900858.

DOI Google Scholar
[51]

Fan, X. L., Chen, L., Borodin, O., Ji, X., Chen, J., Hou, S., Deng, T., Zheng,
J., Yang, C. Y., Liou, S. C., et al. (2018). Non-flammable electrolyte enables
Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13,
715–722.

DOI Google Scholar
[52]

Lu, Y. Y., Tu, Z. Y., Archer, L. A. (2014). Stable lithium electrodeposition in
liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969.

DOI Google Scholar
[53]

Liu, P., Su, H., Liu, Y., Zhong, Y., Xian, C. X., Zhang, Y. Q., Wang, X. L.,
Xia, X. H., Tu, J. P. (2022). LiBr–LiF-rich solid–electrolyte interface layer on
lithiophilic 3D framework for enhanced lithium metal anode. Small Structures. 3,
2200010.

DOI Google Scholar
[54]

Ma, Y., Wu, F., Chen, N., Yang, T., Liang, Y., Sun, Z., Luo, G., Du, J., Shang,
Y., Feng, M., et al. (2022). A dual functional artificial SEI layer based on a
facile surface chemistry for stable lithium metal anode. Molecules. 27, 5199.

DOI Google Scholar
[55]

Chen, C., Liang, Q. W., Wang, G., Liu, D. D., Xiong, X. H. (2022).
Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes.
Adv. Funct. Mater. 32, 2107249.

DOI Google Scholar
[56]

Yang, Z., Liu, W., Chen, Q., Wang, X., Zhang, W., Zhang, Q., Zuo, J., Yao, Y.,
Gu, X., Si, K., et al. (2023). Ultrasmooth and dense lithium deposition toward
high-performance lithium-metal batteries. Adv. Mater. 35, 2210130.

DOI Google Scholar
[57]

Ding, D., Zhang, B., Wang, L., Dou, J. M., Zhai, Y. J., Xu, L. Q. (2022).
Flexible Mg3N2 layer regulates lithium plating-striping for stable and high
capacity lithium metal anodes. Nano Res. 15, 8128–8135.

DOI Google Scholar
[58]

Zhang, Y., Liu, Y., Tan, L. G., Zhou, J. J., Ding, F., Wang, S. Y., Li, M. H.,
Li, H., Yi, C. Y. (2022). Collaborative assembly of a fluorine-enriched
heterostructured solid electrolyte interphase for ultralong-life lithium metal
batteries. ACS Appl. Mater. Interfaces. 14, 43917–43925.

DOI Google Scholar
[59]

Liu, H. J., Yang, C. Y., Han, M. C., Yu, C. Y., Li, X. F., Yu, Z. Z., Qu, J.
(2023). In-situ constructing a heterogeneous layer on lithium metal anodes for
dendrite-free lithium deposition and high Li-ion flux. Angew. Chem. Int. Ed. 62,
e202217458.

DOI Google Scholar
[60]

Ha, S., Kim, D., Lim, H. K., Koo, C. M., Kim, S. J., Yun, Y. S. (2021).
Lithiophilic MXene-guided lithium metal nucleation and growth behavior. Adv.
Funct. Mater. 31, 2101261.

DOI Google Scholar
[61]

Yao, W., He, S. J., Xue, Y. C., Zhang, Q. F., Wang, J. S., He, M., Xu, J. G.,
Chen, C., Xiao, X. (2021). V2CTx MXene artificial solid electrolyte interphases
toward dendrite-free lithium metal anodes. ACS Sustain. Chem. Eng. 9, 9961–9969.

DOI Google Scholar
[62]

Wang, S. Z., Chen, J. H., Lu, H. C., Zhang, Y., Yang, J., Nuli, Y. N., Wang, J.
L. (2021). Artificial alloy/Li3N double-layer enabling stable high-capacity
lithium metal anodes. ACS Appl. Energy Mater. 4, 13132–13139.

DOI Google Scholar
[63]

Du, P. Y., Nan, Y., Zhao, H. T., Guo, D. L., Li, B., Wu, S. J. (2021).
Harnessing stiffness and anticorrosion of chromium in an artificial SEI to
achieve a longevous lithium-metal anode. ACS Appl. Energy Mater. 4, 5043–5049.

DOI Google Scholar
[64]

Cao, S. L., He, X., Nie, L. L., Hu, J. W., Chen, M. L., Han, Y., Wang, K. L.,
Jiang, K., Zhou, M. (2022). CF4 plasma-generated LiF-Li2C2 artificial layers for
dendrite-free lithium-metal anodes. Adv. Sci. 9, 2201147.

DOI Google Scholar
[65]

Yang, J., Hou, J. M., Fang, Z. X., Kashif, K., Chen, C., Li, X. R., Zhou, H. P.,
Zhang, S., Feng, T. T., Xu, Z. Q., et al. (2022). Simultaneously in-situ
fabrication of lithium fluoride and sulfide enriched artificial solid
electrolyte interface facilitates high stable lithium metal anode. Chem. Eng. J.
433, 133193.

DOI Google Scholar
[66]

Lee, D., Sun, S., Park, H., Kim, J., Park, K., Hwang, I., Jung, Y., Song, T.,
Paik, U. (2021). Stable artificial solid electrolyte interphase with lithium
selenide and lithium chloride for dendrite-free lithium metal anodes. J. Power
Sources. 506, 230158.

DOI Google Scholar
[67]

Cheng, Z. Z., Chen, Y., Shi, L., Wu, M. F., Wen, Z. Y. (2023). Long-lifespan
lithium metal batteries enabled by a hybrid artificial solid electrolyte
interface layer. ACS Appl. Mater. Interfaces. 15, 10585–10592.

DOI Google Scholar
[68]

Hu, A. J., Chen, W., Du, X. C., Hu, Y., Lei, T. Y., Wang, H. B., Xue, L. X., Li,
Y. Y., Sun, H., Yan, Y. C., et al. (2021). An artificial hybrid interphase for
an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 14,
4115–4124.

DOI Google Scholar
[69]

Liu, H. W., Zhang, J. F., Liu, Y., Wei, Y., Ren, S. Y., Pan, L. D., Su, Y.,
Xiao, J. H., Fan, H. Y., Lin, Y. T., et al. (2022). A flexible artificial
solid-electrolyte interlayer supported by compactness-tailored carbon nanotube
network for dendrite-free lithium metal anode. J. Energy Chem. 69, 421–427.

DOI Google Scholar
[70]

Zhao, F. F., Zhai, P. B., Wei, Y., Yang, Z. L., Chen, Q., Zuo, J. H., Gu, X. K.,
Gong, Y. J. (2022). Constructing artificial SEI layer on lithiophilic MXene
surface for high-performance lithium metal anodes. Adv. Sci. 9, 2103930.

DOI Google Scholar
[71]

Zhai, P. B., Wang, T. S., Jiang, H. N., Wan, J. Y., Wei, Y., Wang, L., Liu, W.,
Chen, Q., Yang, W. W., Cui, Y., et al. (2021). 3D artificial solid-electrolyte
interphase for lithium metal anodes enabled by insulator–metal–insulator layered
heterostructures. Adv. Mater. 33, 2006247.

DOI Google Scholar
[72]

Wang, Z. J., Wang, Y. Y., Zhang, Z. H., Chen, X. W., Lie, W., He, Y. B., Zhou,
Z., Xia, G. L., Guo, Z. P. (2020). Building artificial solid-electrolyte
interphase with uniform intermolecular ionic bonds toward dendrite-free lithium
metal anodes. Adv. Funct. Mater. 30, 2002414.

DOI Google Scholar
[73]

Zhong, Y., Huang, P., Yan, W., Su, Z., Sun, C., Xing, Y. M., Lai, C. (2022).
Ion-conductive polytitanosiloxane networks enable a robust solid-electrolyte
interface for long-cycling lithium metal anodes. Adv. Funct. Mater. 32, 2110347.

DOI Google Scholar
[74]

Beichel, W., Skrotzki, J., Klose, P., Njel, C., Butschke, B., Burger, S., Liu,
L. L., Thomann, R., Thomann, Y., Biro, D., et al. (2022). An artificial SEI
layer based on an inorganic coordination polymer with self-healing ability for
long-lived rechargeable lithium-metal batteries. Batteries Supercaps. 5,
e202100347.

DOI Google Scholar
[75]

Wang, Y. Y., Wang, Z. J., Zhao, L., Fan, Q. N., Zeng, X. H., Liu, S. L., Pang,
W. K., He, Y. B., Guo, Z. P. (2021). Lithium metal electrode with increased air
stability and robust solid electrolyte interphase realized by silane coupling
agent modification. Adv. Mater. 33, 2008133.

DOI Google Scholar
[76]

Sun, Y. P., Zhao, Y., Wang, J. W., Liang, J. N., Wang, C. H., Sun, Q., Lin, X.
T., Adair, K. R., Luo, J., Wang, D. W., et al. (2019). A novel organic
“polyurea” thin film for ultralong-life lithium-metal anodes via molecular-layer
deposition. Adv. Mater. 31, 1806541.

DOI Google Scholar
[77]

Li, X., Yuan, L. X., Liu, D. Z., Liao, M. Y., Chen, J., Yuan, K., Xiang, J. W.,
Li, Z., Huang, Y. H. (2021). Elevated lithium ion regulation by a “natural silk”
modified separator for high-performance lithium metal anode. Adv. Funct. Mater.
31, 2100537.

DOI Google Scholar
[78]

Yang, Q. L., Li, W. L., Dong, C., Ma, Y. Y., Yin, Y. X., Wu, Q. B., Xu, Z. T.,
Ma, W., Fan, C., Sun, K. N. (2020). PIM-1 as an artificial solid electrolyte
interphase for stable lithium metal anode in high-performance batteries. J.
Energy Chem. 42, 83–90.

DOI Google Scholar
[79]

Zhang, C. H., Yang, Y. X., Sun, Y. J., Duan, L. L., Mei, Z. Y., An, Q., Jing,
Q., Zhao, G. F., Guo, H. (2023). 2D sp2-carbon-linked covalent organic
frameworks as artificial SEI film for dendrite-free lithium metal batteries.
Sci. China Mater. 66, 2591–2600.

DOI Google Scholar
[80]

Chen, T., Wu, H. P., Wan, J., Li, M. X., Zhang, Y. C., Sun, L., Liu, Y. C.,
Chen, L. L., Wen, R., Wang, C. (2021). Synthetic poly-dioxolane as universal
solid electrolyte interphase for stable lithium metal anodes. J. Energy Chem.
62, 172–178.

DOI Google Scholar
[81]

Yu, Q. P., Mai, W. C., Xue, W. J., Xu, G. Y., Liu, Q., Zeng, K., Liu, Y. M.,
Kang, F. Y., Li, B. H., Li, J. (2020). Sacrificial poly(propylene carbonate)
membrane for dispersing nanoparticles and preparing artificial solid electrolyte
interphase on Li metal anode. ACS Appl. Mater. Interfaces. 12, 27087–27094.

DOI Google Scholar
[82]

Gao, Y., Zhao, Y. M., Li, Y. C., Huang, Q. Q., Mallouk, T. E., Wang, D. H.
(2017). Interfacial chemistry regulation via a skin-grafting strategy enables
high-performance lithium-metal batteries. J. Am. Chem. Soc. 139, 15288–15291.

DOI Google Scholar
[83]

Cui, X. M., Chu, Y., Wang, X. H., Zhang, X. Z., Li, Y. X., Pan, Q. M. (2021).
Stabilizing lithium metal anodes by a self-healable and Li-regulating
interlayer. ACS Appl. Mater. Interfaces. 13, 44983–44990.

DOI Google Scholar
[84]

Wang, D. D., Liu, H. X., Liu, F., Ma, G. R., Yang, J., Gu, X. D., Zhou, M.,
Chen, Z. (2021). Phase-separation-induced porous lithiophilic polymer coating
for high-efficiency lithium metal batteries. Nano Lett. 21, 4757–4764.

DOI Google Scholar
[85]

Jin, T., Liu, M., Su, K., Lu, Y., Cheng, G., Liu, Y., Li, N. W., Yu, L. (2021).
Polymer zwitterion-based artificial interphase layers for stable lithium metal
anodes. ACS Appl. Mater. Interfaces. 13, 57489–57496.

DOI Google Scholar
[86]

Song, G., Hwang, C., Song, W. J., Lee, J. H., Lee, S., Han, D. Y., Kim, J.,
Park, H., Song, H. K., Park, S. (2022). Breathable artificial interphase for
dendrite-free and chemo-resistive lithium metal anode. Small. 18, 2105724.

DOI Google Scholar
[87]

Li, S. M., Huang, J. L., Cui, Y., Liu, S. H., Chen, Z. R., Huang, W., Li, C. F.,
Liu, R. L., Fu, R. W., Wu, D. C. (2022). A robust all-organic protective layer
towards ultrahigh-rate and large-capacity Li metal anodes. Nat. Nanotechnol. 17,
613–621.

DOI Google Scholar
[88]

Chen, C., Zhang, J. M., Hu, B. R., Liang, Q. W., Xiong, X. H. (2023). Dynamic
gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium
metal anode. Nat. Commun. 14, 4018.

DOI Google Scholar
[89]

Hu, P., Chen, W., Wang, Y., Chen, T., Qian, X. H., Li, W. Q., Chen, J. Y., Fu,
J. J. (2023). Fatigue-free and skin-like supramolecular ion-conductive
elastomeric interphases for stable lithium metal batteries. ACS Nano. 17,
16239–16251.

DOI Google Scholar
[90]

Jiang, Z. P., Jin, L., Han, Z. L., Hu, W., Zeng, Z. Q., Sun, Y. L., Xie, J.
(2019). Facile generation of polymer–alloy hybrid layers for dendrite-free
lithium-metal anodes with improved moisture stability. Angew. Chem. Int. Ed. 58,
11374–11378.

DOI Google Scholar
[91]

Hu, Y. F., Li, Z. C., Wang, Z. P., Wang, X. L., Chen, W., Wang, J. C., Zhong, W.
W., Ma, R. G. (2023). Suppressing local dendrite hotspots via current density
redistribution using a superlithiophilic membrane for stable lithium metal
anode. Adv. Sci. 10, 2206995.

DOI Google Scholar
[92]

Ma, W. C., Shi, Y. R., Jiang, J. L., Xu, Y., Liu, X. Y., Shen, C., Jiang, Y.,
Zhao, B., Zhang, J. J. (2022). Regulated lithium deposition behavior by
chlorinated hybrid solid-electrolyte-interphase for stable lithium metal anode.
Chem. Eng. J. 442, 136297.

DOI Google Scholar
[93]

Guan, M. R., Huang, Y. X., Meng, Q. Q., Zhang, B. T., Chen, N., Li, L., Wu, F.,
Chen, R. J. (2022). Stabilization of lithium metal interfaces by constructing
composite artificial solid electrolyte interface with mesoporous TiO2 and
perfluoropolymers. Small. 18, 2202981.

DOI Google Scholar
[94]

Sun, X. R., Yang, S. H., Zhang, T., Shi, Y. B., Dong, L., Ai, G., Li, D. J.,
Mao, W. F. (2022). Regulating Li-ion flux with a high-dielectric hybrid
artificial SEI for stable Li metal anodes. Nanoscale. 14, 5033–5043.

DOI Google Scholar
[95]

Dong, C., Lin, Z. K., Yin, Y. X., Qiao, Y. X., Wang, W., Wu, Q. B., Yang, C. X.,
Rooney, D., Fan, C., Sun, K. N. (2021). A robust interface enabled by
electrospun membrane with optimal resistance in lithium metal batteries. J.
Energy Chem. 55, 1–9.

DOI Google Scholar
[96]

Chen, A. L., Qian, Y. S., Zheng, S. J., Chen, Y. Y., Ouyang, Y., Mo, L. L., Xu,
Z. L., Miao, Y. E., Liu, T. X. (2023). In-situ constructed polymer/alloy
composite with high ionic conductivity as an artificial solid electrolyte
interphase to stabilize lithium metal anode. Nano Res. 16, 3888–3894.

DOI Google Scholar
[97]

Wu, C., Guo, F. H., Zhuang, L., Ai, X. P., Zhong, F. P., Yang, H. X., Qian, J.
F. (2020). Mesoporous silica reinforced hybrid polymer artificial layer for
high-energy and long-cycling lithium metal batteries. ACS Energy Lett. 5,
1644–1652.

DOI Google Scholar
[98]

Ye, S. F., Wang, L. F., Liu, F. F., Shi, P. C., Wang, H. Y., Wu, X. J., Yu, Y.
(2020). g-C3N4 derivative artificial organic/inorganic composite solid
electrolyte interphase layer for stable lithium metal anode. Adv. Energy Mater.
10, 2002647.

DOI Google Scholar
[99]

Wei, L., Jin, Z. Q., Lu, J. H., Guo, Y., Wang, Z. L., Cao, G. P., Qiu, J. Y.,
Wang, A. B., Wang, W. K. (2023). In-situ construction of hybrid artificial SEI
with fluorinated siloxane to enable dendrite-free Li metal anodes. J.
Materiomics. 9, 318–327.

DOI Google Scholar
[100]

Zhao, F., Deng, W., Dong, D. J., Zhou, X. F., Liu, Z. P. (2022). Seamlessly
integrated alloy-polymer interphase for high-rate and long-life lithium metal
anodes. Mater. Today Energy. 26, 100988.

DOI Google Scholar
[101]

Cai, Q. C., Qin, X. Y., Lin, K., Yang, Z. J., Hu, X., Li, T., Kang, F. Y., Li,
B. H. (2021). Gradient structure design of a floatable host for preferential
lithium deposition. Nano Lett. 21, 10252–10259.

DOI Google Scholar
[102]

Li, S., Wang, X. S., Li, Q. D., Liu, Q., Shi, P. R., Yu, J., Lv, W., Kang, F.
Y., He, Y. B., Yang, Q. H. (2021). A multifunctional artificial protective layer
for producing an ultra-stable lithium metal anode in a commercial carbonate
electrolyte. J. Mater. Chem. A. 9, 7667–7674.

DOI Google Scholar
[103]

Zhang, K., Wu, F., Zhang, K., Weng, S. T., Wang, X. R., Gao, M. D., Sun, Y. H.,
Cao, D., Bai, Y., Xu, H. J., et al. (2021). Chlorinated dual-protective layers
as interfacial stabilizer for dendrite-free lithium metal anode. Energy Storage
Mater. 41, 485–494.

DOI Google Scholar
[104]

Zeng, J. K., Liu, Q. T., Jia, D. Y., Liu, R. L., Liu, S. H., Zheng, B. N., Zhu,
Y. L., Fu, R. W., Wu, D. C. (2021). A polymer brush-based robust and flexible
single-ion conducting artificial SEI film for fast charging lithium metal
batteries. Energy Storage Mater. 41, 697–702.

DOI Google Scholar
[105]

Jiang, G. Y., Li, K. Y., Yu, F., Li, X. L., Mao, J. Y., Jiang, W. W., Sun, F.
G., Dai, B., Li, Y. S. (2021). Robust artificial solid-electrolyte interfaces
with biomimetic ionic channels for dendrite-free Li metal anodes. Adv. Energy
Mater. 11, 2003496.

DOI Google Scholar
[106]

Yu, Z. A., Seo, S., Song, J., Zhang, Z. W., Oyakhire, S. T., Wang, Y., Xu, R.,
Gong, H. X., Zhang, S., Zheng, Y., et al. (2022). A solution-processable
high-modulus crystalline artificial solid electrolyte interphase for practical
lithium metal batteries. Adv. Energy Mater. 12, 2201025.

DOI Google Scholar
[107]

Ha, S., Yoon, H. J., Jung, J. I., Kim, H., Won, S., Kwak, J. H., Lim, H. D.,
Jin, H. J., Wie, J. J., Yun, Y. S. (2021). 3D-structured organic-inorganic
hybrid solid-electrolyte-interface layers for Lithium metal anode. Energy
Storage Mater. 37, 567–575.

DOI Google Scholar
[108]

Shang, M. W., Shovon, O. G., Wong, F. E. Y., Niu, J. J. (2023). A BF3-doped
mxene dual-layer interphase for a reliable lithium-metal anode. Adv. Mater. 35,
2210111.

DOI Google Scholar
[109]

Cheng, Y. F., Wang, Z. J., Chen, J. B., Chen, Y. M., Ke, X., Wu, D. J., Zhang,
Q., Zhu, Y. M., Yang, X. M., Gu, M., et al. (2023). Catalytic chemistry derived
artificial solid electrolyte interphase for stable lithium metal anodes working
at 20 mA cm−2 and 20 mAh cm−2. Angew. Chem. Int. Ed. 62, e202305723.

DOI Google Scholar

About this article
Publication history
Copyright
Rights and permissions


PUBLICATION HISTORY

Received: 23 August 2023
Revised: 09 September 2023
Accepted: 10 September 2023
Published: 25 September 2023
Issue date: September 2023


COPYRIGHT

© The Author(s) 2023. Published by Tsinghua University Press.



RIGHTS AND PERMISSIONS

The articles published in this open access journal are distributed under the
terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, distribution
and reproduction in any medium, provided the original work is properly cited.


Return




Select Folder
Create new folder Delete folder
Save
About UsPrivacy Policy
Peer Review PolicyLearn about Open Access
FAQContact Us

Copyright © 2023 Tsinghua University Press Ltd.

京ICP备 10035462号-42

微信分享

手机微信扫描二维码,点击右上角···按钮
分享到微信朋友圈
Posted by 2 X users
1 readers on Mendeley
See more details