link.springer.com Open in urlscan Pro
151.101.0.95  Public Scan

URL: https://link.springer.com/article/10.1007/s40520-016-0717-0
Submission: On October 30 via manual from US — Scanned from DE

Form analysis 3 forms found in the DOM

GET //link.springer.com/search

<form role="search" method="GET" action="//link.springer.com/search" data-track="submit" data-track-action="submit search form" data-track-category="unified header" data-track-label="form">
  <label for="header-search" class="c-header__search-label">Search by keyword or author</label>
  <div class="c-header__search-container">
    <input id="header-search" class="c-header__search-input" autocomplete="off" name="query" type="text" value="" required="">
    <button class="c-header__search-button" type="submit">
      <svg class="c-header__icon" aria-hidden="true" focusable="false">
        <use xlink:href="#icon-eds-search"></use>
      </svg>
      <span class="u-visually-hidden">Search</span>
    </button>
  </div>
</form>

POST https://order.springer.com/public/cart?messageOnly=1

<form action="https://order.springer.com/public/cart?messageOnly=1" method="post">
  <input type="hidden" name="type" value="article"><input type="hidden" name="doi" value="10.1007/s40520-016-0717-0"><input type="hidden" name="isxn" value="1720-8319"><input type="hidden" name="contenttitle"
    value="Measurement of muscle mass in sarcopenia: from imaging to biochemical markers"><input type="hidden" name="copyrightyear" value="2017"><input type="hidden" name="year" value="2017"><input type="hidden" name="authors"
    value="Matteo Tosato, et al."><input type="hidden" name="title" value="Aging Clinical and Experimental Research"><input type="hidden" name="mac" value="270CE8441643D0A55F901ABEC439DA80"><input type="submit" class="c-box__button"
    onclick="dataLayer.push({&quot;event&quot;:&quot;addToCart&quot;,&quot;ecommerce&quot;:{&quot;currencyCode&quot;:&quot;EUR&quot;,&quot;add&quot;:{&quot;products&quot;:[{&quot;name&quot;:&quot;Measurement of muscle mass in sarcopenia: from imaging to biochemical markers&quot;,&quot;id&quot;:&quot;1720-8319&quot;,&quot;price&quot;:39.95,&quot;brand&quot;:&quot;Springer International Publishing&quot;,&quot;category&quot;:&quot;Medicine &amp; Public Health&quot;,&quot;variant&quot;:&quot;ppv-article&quot;,&quot;quantity&quot;:1}]}}});"
    value="Buy article PDF">
</form>

POST https://order.springer.com/public/cart?messageOnly=1

<form action="https://order.springer.com/public/cart?messageOnly=1" method="post">
  <input type="hidden" name="type" value="article"><input type="hidden" name="doi" value="10.1007/s40520-016-0717-0"><input type="hidden" name="isxn" value="1720-8319"><input type="hidden" name="contenttitle"
    value="Measurement of muscle mass in sarcopenia: from imaging to biochemical markers"><input type="hidden" name="copyrightyear" value="2017"><input type="hidden" name="year" value="2017"><input type="hidden" name="authors"
    value="Matteo Tosato, et al."><input type="hidden" name="title" value="Aging Clinical and Experimental Research"><input type="hidden" name="mac" value="270CE8441643D0A55F901ABEC439DA80"><input type="submit" class="c-box__button"
    onclick="dataLayer.push({&quot;event&quot;:&quot;addToCart&quot;,&quot;ecommerce&quot;:{&quot;currencyCode&quot;:&quot;EUR&quot;,&quot;add&quot;:{&quot;products&quot;:[{&quot;name&quot;:&quot;Measurement of muscle mass in sarcopenia: from imaging to biochemical markers&quot;,&quot;id&quot;:&quot;1720-8319&quot;,&quot;price&quot;:39.95,&quot;brand&quot;:&quot;Springer International Publishing&quot;,&quot;category&quot;:&quot;Medicine &amp; Public Health&quot;,&quot;variant&quot;:&quot;ppv-article&quot;,&quot;quantity&quot;:1}]}}});"
    value="Buy article PDF">
</form>

Text Content

YOUR PRIVACY

We use cookies to make sure that our website works properly, as well as some
optional cookies to personalise content and advertising, provide social media
features and analyse how people use our site. By accepting some or all optional
cookies you give consent to the processing of your personal data, including
transfer to third parties, some in countries outside of the European Economic
Area that do not offer the same data protection standards as the country where
you live. You can decide which optional cookies to accept by clicking on "Manage
preferences", where you can also find more information about how your personal
data is processed. Further information can be found in our privacy policy.

Accept all cookies Manage preferences
Skip to main content


Advertisement



Log in
Menu
Find a journal Publish with us
Search
Cart


SEARCH

Search by keyword or author
Search


NAVIGATION

 * Find a journal
 * Publish with us

 1. Home
 2. Aging Clinical and Experimental Research
 3. Article

 * Review Article
 * Published: 07 February 2017


MEASUREMENT OF MUSCLE MASS IN SARCOPENIA: FROM IMAGING TO BIOCHEMICAL MARKERS

 * Matteo Tosato1,
 * Emanuele Marzetti1,
 * Matteo Cesari2,3,
 * Giulia Savera1,
 * Ram R. Miller4,
 * Roberto Bernabei1,
 * Francesco Landi1 &
 * …
 * Riccardo Calvani1 

Show authors

Aging Clinical and Experimental Research volume 29, pages 19–27 (2017)Cite this
article

 * 8074 Accesses

 * 189 Citations

 * 26 Altmetric

 * Metrics details


ABSTRACT

Sarcopenia encompasses the loss of muscle mass and strength/function during
aging. Several methods are available for the estimation of muscle or lean body
mass. Popular assessment tools include body imaging techniques (e.g., magnetic
resonance imaging, computed tomography, dual X-ray absorptiometry,
ultrasonography), bioelectric impedance analysis, anthropometric parameters
(e.g., calf circumference, mid-arm muscle circumference), and biochemical
markers (total or partial body potassium, serum and urinary creatinine,
deuterated creatine dilution method). The heterogeneity of the populations to be
evaluated as well as the setting in which sarcopenia is investigated impacts the
definition of “gold standard” assessment techniques. The aim of this article is
to critically review available methods for muscle mass estimation, highlighting
strengths and weaknesses of each of them as well as their proposed field of
application.

This is a preview of subscription content, access via your institution.


ACCESS OPTIONS


BUY SINGLE ARTICLE

Instant access to the full article PDF.

39,95 €

Price includes VAT (Germany)




Rent this article via DeepDyve.

Learn more about Institutional subscriptions







REFERENCES

 1.  Marzetti E (2012) Editorial: imaging, functional and biological markers for
     sarcopenia: the pursuit of the golden ratio. J Frailty Aging 1:97–98
     
     CAS  Google Scholar 

 2.  Cruz-Jentoft AJ, Landi F (2014) Sarcopenia. Clin Med (Lond) 14:183–186.
     doi:10.7861/clinmedicine
     
     Article  Google Scholar 

 3.  Cesari M, Fielding RA, Pahor M, Goodpaster B, Hellerstein M, van Kan GA,
     Anker SD, Rutkove S, Vrijbloed JW, Isaac M, Rolland Y, M’rini C,
     Aubertin-Leheudre M, Cedarbaum JM, Zamboni M, Sieber CC, Laurent D, Evans
     WJ, Roubenoff R, Morley JE, Vellas B; International Working Group on
     Sarcopenia (2012) Biomarkers of sarcopenia in clinical
     trials-recommendations from the International Working Group on Sarcopenia.
     J Cachexia Sarcopenia Muscle 3:181–190. doi:10.1007/s13539-012-0078-2
     
     Article  PubMed  PubMed Central  Google Scholar 

 4.  Houmard JA, Smith R, Jendrasiak GL (1995) Relationship between MRI
     relaxation time and muscle fiber composition. J Appl Physiol (1985)
     78;807–809
     
     CAS  Google Scholar 

 5.  White LJ, Ferguson MA, McCoy SC, Kim H (2003) Intramyocellular lipid
     changes in men and women during aerobic exercise: a (1)H-magnetic resonance
     spectroscopy study. J Clin Endocrinol Metab 88:5638–5643.
     doi:10.1210/jc.2003-031006
     
     Article  CAS  PubMed  Google Scholar 

 6.  Marzetti E, Lees HA, Manini TM, Buford TW, Aranda JM Jr, Calvani R, Capuani
     G, Marsiske M, Lott DJ, Vandenborne K, Bernabei R, Pahor M, Leeuwenburgh C,
     Wohlgemuth SE (2012) Skeletal muscle apoptotic signaling predicts thigh
     muscle volume and gait speed in community-dwelling older persons: an
     exploratory study. PLoS One 7:e32829. doi:10.1371/journal.pone.0032829
     
     Article  CAS  PubMed  PubMed Central  Google Scholar 

 7.  Kuno S, Katsuta S, Akisada M, Anno I, Matsumoto K (1990) Effect of strength
     training on the relationship between magnetic resonance relaxation time and
     muscle fibre composition. Eur J Appl Physiol Occup Physiol 61:33–36.
     doi:10.1007/BF00236690
     
     Article  CAS  PubMed  Google Scholar 

 8.  Prado CM, Heymsfield SB (2014) Lean tissue imaging: a new era for
     nutritional assessment and intervention. JPEN J Parenter Enteral Nutr
     38:940–953. doi:10.1177/0148607114550189
     
     Article  PubMed  PubMed Central  Google Scholar 

 9.  Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge MP, Albu J, Heymsfield
     SB, Heshka S (2004) Total body skeletal muscle and adipose tissue volumes:
     estimation from a single abdominal cross-sectional image. J Appl Physiol
     (1985) 97:2333–2338. doi:10.1152/japplphysiol.00744.2004
     
     Article  Google Scholar 

 10. Ferland M, Després JP, Tremblay A, Pinault S, Nadeau A, Moorjani S, Lupien
     PJ, Thériault G, Bouchard C (1989) Assessment of adipose tissue
     distribution by computed axial tomography in obese women: association with
     body density and anthropometric measurements. Br J Nutr 61:139–148.
     doi:10.1079/BJN19890104
     
     Article  CAS  PubMed  Google Scholar 

 11. Mattsson S, Thomas BJ (2006) Development of methods for body composition
     studies. Phys Med Biol 51:R203–R228. doi:10.1088/0031-9155/51/13/R13
     
     Article  CAS  PubMed  Google Scholar 

 12. Hangartner TN, Warner S, Braillon P, Jankowski L, Shepherd J (2013) The
     Official Positions of the International Society for Clinical Densitometry:
     acquisition of dual-energy X-ray absorptiometry body composition and
     considerations regarding analysis and repeatability of measures. J Clin
     Densitom 16:520–536. doi:10.1016/j.jocd.2013.08.007
     
     Article  PubMed  Google Scholar 

 13. Levine JA, Abboud L, Barry M, Reed JE, Sheedy PF, Jensen MD (2000)
     Measuring leg muscle and fat mass in humans: comparison of CT and
     dual-energy X-ray absorptiometry. J Appl Physiol (1985) 88:452–456
     
     CAS  Google Scholar 

 14. Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB,
     Stamm E, Newman AB (2001) Attenuation of skeletal muscle and strength in
     the elderly: The Health ABC Study. J Appl Physiol (1985) 90:2157–2165
     
     CAS  Google Scholar 

 15. Lang T, Cauley JA, Tylavsky F, Bauer D, Cummings S, Harris TB; Health ABC
     Study (2010) Computed tomographic measurements of thigh muscle
     cross-sectional area and attenuation coefficient predict hip fracture: the
     health, aging, and body composition study. J Bone Miner Res 25;513–519.
     doi:10.1359/jbmr.090807
     
     Article  PubMed  Google Scholar 

 16. Damilakis J, Adams JE, Guglielmi G, Link TM (2010) Radiation exposure in
     X-ray-based imaging techniques used in osteoporosis. Eur Radiol
     20:2707–2714. doi:10.1007/s00330-010-1845-0
     
     Article  PubMed  PubMed Central  Google Scholar 

 17. Frank-Wilson AW, Johnston JD, Olszynski WP, Kontulainen SA (2015)
     Measurement of muscle and fat in postmenopausal women: precision of
     previously reported pQCT imaging methods. Bone 75:49–54.
     doi:10.1016/j.bone.2015.01.016
     
     Article  PubMed  Google Scholar 

 18. Lustgarten MS, Fielding RA (2011) Assessment of analytical methods used to
     measure changes in body composition in the elderly and recommendations for
     their use in phase II clinical trials. J Nutr Health Aging 15:368–375.
     doi:10.1007/s12603-011-0049-x
     
     Article  CAS  PubMed  PubMed Central  Google Scholar 

 19. Damilakis J, Perisinakis K, Vrahoriti H, Kontakis G, Varveris H,
     Gourtsoyiannis N (2002) Embryo/fetus radiation dose and risk from dual
     X-ray absorptiometry examinations. Osteoporos Int 13:716–722.
     doi:10.1007/s001980200098
     
     Article  CAS  PubMed  Google Scholar 

 20. Heymsfield SB, Adamek M, Gonzalez MC, Jia G, Thomas DM (2014) Assessing
     skeletal muscle mass: historical overview and state of the art. J Cachexia
     Sarcopenia Muscle 5:9–18. doi:10.1007/s13539-014-0130-5
     
     Article  PubMed  PubMed Central  Google Scholar 

 21. Proctor DN, O’Brien PC, Atkinson EJ, Nair KS (1999) Comparison of
     techniques to estimate total body skeletal muscle mass in people of
     different age groups. Am J Physiol 277:E489–E495
     
     CAS  PubMed  Google Scholar 

 22. Bredella MA, Ghomi RH, Thomas BJ, Torriani M, Brick DJ, Gerweck AV, Misra
     M, Klibanski A, Miller KK (2010) Comparison of DXA and CT in the assessment
     of body composition in premenopausal women with obesity and anorexia
     nervosa. Obesity (Silver Spring) 18:2227–2233. doi:10.1038/oby.2010.5
     
     Article  Google Scholar 

 23. Marzetti E, Calvani R, Landi F, Hoogendijk EO, Fougère B, Vellas B, Pahor
     M, Bernabei R, Cesari M; SPRINTT Consortium (2015) Innovative Medicines
     Initiative: The SPRINTT Project. J Frailty Aging 4:207–208.
     doi:10.14283/jfa.2015.69
     
     CAS  Google Scholar 

 24. Wagner DR (2013) Ultrasound as a tool to assess body fat. J
     Obes 2013:280713. doi: 10.1155/2013/280713
     
     PubMed  PubMed Central  Google Scholar 

 25. Tillquist M, Kutsogiannis DJ, Wischmeyer PE, Kummerlen C, Leung R, Stollery
     D, Karvellas CJ, Preiser JC, Bird N, Kozar R, Heyland DK (2013) Bedside
     ultrasound is a practical and reliable measurement tool for assessing
     quadriceps muscle layer thickness. JPEN J Parenter Enteral Nutr 38:886–890.
     doi:10.1177/0148607113501327
     
     Article  PubMed  PubMed Central  Google Scholar 

 26. Mayans D, Cartwright MS, Walker FO (2012) Neuromuscular ultrasonography:
     quantifying muscle and nerve measurements. Phys Med Rehabil Clin N Am
     23:133–148. doi:10.1016/j.pmr.2011.11.009
     
     Article  PubMed  Google Scholar 

 27. Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI (1985) Assessment of
     fat-free mass using bioelectrical impedance measurements of the human body.
     Am J Clin Nutr 41:810–817
     
     CAS  PubMed  Google Scholar 

 28. Janssen I, Heymsfield SB, Baumgartner RN, Ross R (2000) Estimation of
     skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol
     (1985) 89:465–471
     
     CAS  Google Scholar 

 29. Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R (2004)
     Skeletal muscle cutpoints associated with elevated physical disability risk
     in older men and women. Am J Epidemiol 159:413–421
     
     Article  PubMed  Google Scholar 

 30. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F,
     Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M,
     Zamboni M; European Working Group on Sarcopenia in Older People (2010)
     Sarcopenia: European consensus on definition and diagnosis: report of the
     European Working Group on Sarcopenia in Older People. Age Ageing
     39:412–423. doi:10.1093/ageing/afq034
     
     Article  PubMed  PubMed Central  Google Scholar 

 31. Chumlea WC, Guo SS, Kuczmarski RJ, Flegal KM, Johnson CL, Heymsfield SB,
     Lukaski HC, Friedl K, Hubbard VS (2002) Body composition estimates from
     NHANES III bioelectrical impedance data. Int J Obes Relat Metab Disord
     26:1596–1609. doi:10.1038/sj.ijo.0802167
     
     Article  CAS  PubMed  Google Scholar 

 32. NIH Expert Panel (1996) Bioelectrical impedance analysis in body
     composition measurement: National Institutes of Health Technology
     Assessment Conference Statement. Am J Clin Nutr 64(3 Suppl):524S–532S
     
     Google Scholar 

 33. Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S,
     Cederholm T, Coats AJ, Cummings SR, Evans WJ, Fearon K, Ferrucci L,
     Fielding RA, Guralnik JM, Harris TB, Inui A, Kalantar-Zadeh K, Kirwan BA,
     Mantovani G, Muscaritoli M, Newman AB, Rossi-Fanelli F, Rosano GM,
     Roubenoff R, Schambelan M, Sokol GH, Storer TW, Vellas B, von Haehling S,
     Yeh SS, Anker SD; Society on Sarcopenia, Cachexia and Wasting Disorders
     Trialist Workshop (2011) Sarcopenia with limited mobility: an international
     consensus. J Am Med Dir Assoc 12:403–409. doi:10.1016/j.jamda.2011.04.014
     
     Article  PubMed  PubMed Central  Google Scholar 

 34. Rutkove SB, Aaron R, Shiffman CA (2002) Localized bioimpedance analysis in
     the evaluation of neuromuscular disease. Muscle Nerve 25:390–397.
     doi:10.1002/mus.10048
     
     Article  PubMed  Google Scholar 

 35. Rutkove SB (2009) Electrical impedance myography: Background, current
     state, and future directions. Muscle Nerve 40:936–946.
     doi:10.1002/mus.21362
     
     Article  PubMed  PubMed Central  Google Scholar 

 36. Aaron R, Shiffman CA (2000) Using localized impedance measurements to study
     muscle changes in injury and disease. Ann N Y Acad Sci 904:171–180.
     doi:10.1111/j.1749-6632.2000.tb06443.x
     
     Article  CAS  PubMed  Google Scholar 

 37. Shiffman CA, Aaron R, Amoss V, Therrien J, Coomler K (1999) Resistivity and
     phase in localized BIA. Phys Med Biol 44:2409–2429.
     doi:10.1088/0031-9155/44/10/304
     
     Article  CAS  PubMed  Google Scholar 

 38. Faes TJ, van der Meij HA, de Munck JC, Heethaar RM (1999) The electric
     resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review
     studies. Physiol Meas 20:R1–R10. doi:10.1088/0967-3334/20/4/201
     
     Article  CAS  PubMed  Google Scholar 

 39. Landi F, Martone AM, Calvani R, Marzetti E (2014) Sarcopenia risk screening
     tool: a new strategy for clinical practice. J Am Med Dir Assoc 15:613–614.
     doi:10.1016/j.jamda.2014.05.015
     
     Article  PubMed  Google Scholar 

 40. Landi F, Russo A, Liperoti R, Pahor M, Tosato M, Capoluongo E, Bernabei R,
     Onder G (2010) Midarm muscle circumference, physical performance and
     mortality: results from the aging and longevity study in the Sirente
     geographic area (ilSIRENTE study). Clin Nutr 29:441–447.
     doi:10.1016/j.clnu.2009.12.006
     
     Article  PubMed  Google Scholar 

 41. Landi F, Onder G, Russo A, Liperoti R, Tosato M, Martone AM, Capoluongo E,
     Bernabei R (2014) Calf circumference, frailty and physical performance
     among older adults living in the community. Clin Nutr 33:539–544.
     doi:10.1016/j.clnu.2013.07.013
     
     Article  PubMed  Google Scholar 

 42. Wijnhoven HA, van Bokhorst-de van der Schueren MA, Heymans MW, de Vet HC,
     Kruizenga HM, Twisk JW, Visser M (2010) Low mid-upper arm circumference,
     calf circumference, and body mass index and mortality in older persons. J
     Gerontol A Biol Sci Med Sci 65:1107–1114. doi:10.1093/gerona/glq100
     
     Article  PubMed  Google Scholar 

 43. Rolland Y, Lauwers-Cances V, Cournot M, Nourhashémi F, Reynish W, Rivière
     D, Vellas B, Grandjean H (2003) Sarcopenia, calf circumference, and
     physical function of elderly women: a cross-sectional study. J Am Geriatr
     Soc 51:1120–1124. doi:10.1046/j.1532-5415.2003.51362.x
     
     Article  PubMed  Google Scholar 

 44. de Onis M, Habicht JP (1996) Anthropometric reference data for
     international use: recommendations from a World Health Organization Expert
     Committee. Am J Clin Nutr 64:650–658
     
     PubMed  Google Scholar 

 45. Antonelli Incalzi R, Landi F, Cipriani L, Bruno E, Pagano F, Gemma A,
     Capparella O, Carbonin PU (1996) Nutritional assessment: a primary
     component of multidimensional geriatric assessment in the acute care
     setting. J Am Geriatr Soc 44:166–174. doi:10.1111/j.1532-5415.1996.tb02434
     
     Article  CAS  PubMed  Google Scholar 

 46. Calvani R, Marini F, Cesari M, Tosato M, Anker SD, von Haehling S, Miller
     RR, Bernabei R, Landi F, Marzetti E; SPRINTT consortium (2015) Biomarkers
     for physical frailty and sarcopenia: state of the science and future
     developments. J Cachexia Sarcopenia Muscle 6;278–286.
     doi:10.1002/jcsm.12051
     
     Article  PubMed  PubMed Central  Google Scholar 

 47. Heymsfield SB, Gallagher D, Visser M, Nuñez C, Wang ZM (1995) Measurement
     of skeletal muscle: laboratory and epidemiological methods. J Gerontol A
     Biol Sci Med Sci 50 Spec No:23–29. doi:10.1093/gerona/50A
     
     PubMed  Google Scholar 

 48. Kehayias JJ, Fiatarone MA, Zhuang H, Roubenoff R (1997) Total body
     potassium and body fat: relevance to aging. Am J Clin Nutr 66:904–910
     
     CAS  PubMed  Google Scholar 

 49. Wielopolski L, Ramirez LM, Gallagher D, Sarkar SR, Zhu F, Kaysen GA, Levin
     NW, Heymsfield SB, Wang ZM (2006) Measuring partial body potassium in the
     arm versus total body potassium. J Appl Physiol (1985) 101;945–949.
     doi:10.1152/japplphysiol.00999.2005
     
     Article  CAS  Google Scholar 

 50. Wielopolski L, Ramirez LM, Spungen AM, Swaby S, Asselin P, Bauman WA (2009)
     Measuring partial body potassium in the legs of patients with spinal cord
     injury: a new approach. J Appl Physiol (1985) 106;268–273.
     doi:10.1152/japplphysiol.90435.2008
     
     Article  CAS  Google Scholar 

 51. Heymsfield SB, Arteaga C, McManus C, Smith J, Moffitt S (1983) Measurement
     of muscle mass in humans: validity of the 24-hour urinary creatinine
     method. Am J Clin Nutr 37:478–494
     
     CAS  PubMed  Google Scholar 

 52. Keshaviah PR, Nolph KD, Moore HL, Prowant B, Emerson PF, Meyer M,
     Twardowski ZJ, Khanna R, Ponferrada L, Collins A (1994) Lean body mass
     estimation by creatinine kinetics. J Am Soc Nephrol 4:1475–1485
     
     CAS  PubMed  Google Scholar 

 53. Bhatla B, Moore H, Emerson P, Keshaviah P, Prowant B, Nolph KD, Singh A
     (1995) Lean body mass estimation by creatinine kinetics, bioimpedance, and
     dual energy X-ray absorptiometry in patients on continuous ambulatory
     peritoneal dialysis. ASAIO J 41:M442–M446
     
     Article  CAS  PubMed  Google Scholar 

 54. Patel SS, Molnar MZ, Tayek JA, Ix JH, Noori N, Benner D, Heymsfield S,
     Kopple JD, Kovesdy CP, Kalantar-Zadeh K (2013) Serum creatinine as a marker
     of muscle mass in chronic kidney disease: results of a cross-sectional
     study and review of literature. J Cachexia Sarcopenia Muscle 4:19–29.
     doi:10.1007/s13539-012-0079-1
     
     Article  PubMed  Google Scholar 

 55. Wang ZM, Gallagher D, Nelson ME, Matthews DE, Heymsfield SB (1996)
     Total-body skeletal muscle mass: evaluation of 24-h urinary creatinine
     excretion by computerized axial tomography. Am J Clin Nutr 63:863–869
     
     CAS  PubMed  Google Scholar 

 56. Gerber LM, Mann SJ (2014) Development of a model to estimate 24-hour
     urinary creatinine excretion. J Clin Hypertens (Greenwich) 16:367–371.
     doi:10.1111/jch.12294
     
     Article  CAS  Google Scholar 

 57. Clark RV, Walker AC, O’Connor-Semmes RL, Leonard MS, Miller RR, Stimpson
     SA, Turner SM, Ravussin E, Cefalu WT, Hellerstein MK, Evans WJ (2014) Total
     body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in
     humans. J Appl Physiol (1985) 116:1605–1613.
     doi:10.1152/japplphysiol.00045.2014
     
     Article  CAS  Google Scholar 

 58. Stimpson SA, Turner SM, Clifton LG, Poole JC, Mohammed HA, Shearer TW,
     Waitt GM, Hagerty LL, Remlinger KS, Hellerstein MK, Evans WJ (2012)
     Total-body creatine pool size and skeletal muscle mass determination by
     creatine-(methyl-D3) dilution in rats. J Appl Physiol (1985) 112:1940–1948.
     doi:10.1152/japplphysiol.00122.2012
     
     Article  CAS  Google Scholar 

 59. Stimpson SA, Leonard MS, Clifton LG, Poole JC, Turner SM, Shearer TW,
     Remlinger KS, Clark RV, Hellerstein MK, Evans WJ (2013) Longitudinal
     changes in total body creatine pool size and skeletal muscle mass using the
     D3-creatine dilution method. J Cachexia Sarcopenia Muscle.
     doi:10.1007/s13539-013-0110-1
     
     PubMed  PubMed Central  Google Scholar 

 60. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB,
     Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB,
     Shardell MD, Dam TT, Vassileva MT (2014) The FNIH sarcopenia project:
     rationale, study description, conference recommendations, and final
     estimates. J Gerontol A Biol Sci Med Sci 69:547–558.
     doi:10.1093/gerona/glu010
     
     Article  PubMed  PubMed Central  Google Scholar 

 61. Cawthon PM, Peters KW, Shardell MD, McLean RR, Dam TT, Kenny AM, Fragala
     MS, Harris TB, Kiel DP, Guralnik JM, Ferrucci L, Kritchevsky SB, Vassileva
     MT, Studenski SA, Alley DE (2014) Cutpoints for low appendicular lean mass
     that identify older adults with clinically significant weakness. J Gerontol
     A Biol Sci Med Sci 69:567–575. doi:10.1093/gerona/glu023
     
     Article  PubMed  PubMed Central  Google Scholar 

 62. McLean RR, Shardell MD, Alley DE, Cawthon PM, Fragala MS, Harris TB, Kenny
     AM, Peters KW, Ferrucci L, Guralnik JM, Kritchevsky SB, Kiel DP, Vassileva
     MT, Xue QL, Perera S, Studenski SA, Dam TT (2014) Criteria for clinically
     relevant weakness and low lean mass and their longitudinal association with
     incident mobility impairment and mortality: the foundation for the National
     Institutes of Health (FNIH) sarcopenia project. J Gerontol A Biol Sci Med
     Sci 69:576–583. doi:10.1093/gerona/glu012
     
     Article  PubMed  PubMed Central  Google Scholar 

Download references


ACKNOWLEDGEMENTS

The present work was funded by a Grant from the Innovative Medicines
Initiative—Joint Undertaking (IMI-JU 115621). The work was also partly supported
by the “Centro Studi Achille e Linda Lorenzon” (E.M., R.C.), Fondazione Roma
(NCDs Call for Proposals 2013; E.M., R.C.), and intramural research grants from
the Catholic University of the Sacred Heart (D3.2 2013 and D3.2 2015; E.M.,
F.L., M.T., R.C.).


AUTHOR INFORMATION


AUTHORS AND AFFILIATIONS

 1. Department of Geriatrics, Neurosciences and Orthopedics, Catholic University
    of the Sacred Heart School of Medicine, Rome, Italy
    
    Matteo Tosato, Emanuele Marzetti, Giulia Savera, Roberto Bernabei, Francesco
    Landi & Riccardo Calvani

 2. Gérontopôle, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
    
    Matteo Cesari

 3. Université de Toulouse III Paul Sabatier, Toulouse, France
    
    Matteo Cesari

 4. Novartis Institutes for Biomedical Research, Basel, Switzerland
    
    Ram R. Miller

Authors
 1. Matteo Tosato
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 2. Emanuele Marzetti
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 3. Matteo Cesari
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 4. Giulia Savera
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 5. Ram R. Miller
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 6. Roberto Bernabei
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 7. Francesco Landi
    View author publications
    
    You can also search for this author in PubMed Google Scholar

 8. Riccardo Calvani
    View author publications
    
    You can also search for this author in PubMed Google Scholar


CORRESPONDING AUTHOR

Correspondence to Riccardo Calvani.


ETHICS DECLARATIONS


CONFLICT OF INTEREST

The authors of the present work are partners of the SPRINTT Consortium, which is
partly funded by the European Federation of Pharmaceutical Industries and
Associations (EFPIA). E.M. served as a consultant for Huron Consulting Group,
Genactis and Novartis. M.C. served as a consultant for and/or received honoraria
for scientific presentations from Nestlé.


ETHICAL APPROVAL

This article does not contain any studies with human participants or animals
performed by any of the authors.


INFORMED CONSENT

For this type of study informed consent is not required.


RIGHTS AND PERMISSIONS

Reprints and Permissions


ABOUT THIS ARTICLE


CITE THIS ARTICLE

Tosato, M., Marzetti, E., Cesari, M. et al. Measurement of muscle mass in
sarcopenia: from imaging to biochemical markers. Aging Clin Exp Res 29, 19–27
(2017). https://doi.org/10.1007/s40520-016-0717-0

Download citation

 * Received: 12 January 2016

 * Accepted: 10 October 2016

 * Published: 07 February 2017

 * Issue Date: February 2017

 * DOI: https://doi.org/10.1007/s40520-016-0717-0


SHARE THIS ARTICLE

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.



Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative


KEYWORDS

 * Muscle strength
 * Physical function
 * Body imaging
 * Diagnosis
 * Biomarkers
 * Appendicular lean mass
 * DXA


Access via your institution





ACCESS OPTIONS


BUY SINGLE ARTICLE

Instant access to the full article PDF.

39,95 €

Price includes VAT (Germany)




Rent this article via DeepDyve.

Learn more about Institutional subscriptions


 * Sections
 * References

 * Abstract
 * References
 * Acknowledgements
 * Author information
 * Ethics declarations
 * Rights and permissions
 * About this article

Advertisement



 1.  Marzetti E (2012) Editorial: imaging, functional and biological markers for
     sarcopenia: the pursuit of the golden ratio. J Frailty Aging 1:97–98
     
     CAS  Google Scholar 

 2.  Cruz-Jentoft AJ, Landi F (2014) Sarcopenia. Clin Med (Lond) 14:183–186.
     doi:10.7861/clinmedicine
     
     Article  Google Scholar 

 3.  Cesari M, Fielding RA, Pahor M, Goodpaster B, Hellerstein M, van Kan GA,
     Anker SD, Rutkove S, Vrijbloed JW, Isaac M, Rolland Y, M’rini C,
     Aubertin-Leheudre M, Cedarbaum JM, Zamboni M, Sieber CC, Laurent D, Evans
     WJ, Roubenoff R, Morley JE, Vellas B; International Working Group on
     Sarcopenia (2012) Biomarkers of sarcopenia in clinical
     trials-recommendations from the International Working Group on Sarcopenia.
     J Cachexia Sarcopenia Muscle 3:181–190. doi:10.1007/s13539-012-0078-2
     
     Article PubMed PubMed Central  Google Scholar 

 4.  Houmard JA, Smith R, Jendrasiak GL (1995) Relationship between MRI
     relaxation time and muscle fiber composition. J Appl Physiol (1985)
     78;807–809
     
     CAS  Google Scholar 

 5.  White LJ, Ferguson MA, McCoy SC, Kim H (2003) Intramyocellular lipid
     changes in men and women during aerobic exercise: a (1)H-magnetic resonance
     spectroscopy study. J Clin Endocrinol Metab 88:5638–5643.
     doi:10.1210/jc.2003-031006
     
     Article CAS PubMed  Google Scholar 

 6.  Marzetti E, Lees HA, Manini TM, Buford TW, Aranda JM Jr, Calvani R, Capuani
     G, Marsiske M, Lott DJ, Vandenborne K, Bernabei R, Pahor M, Leeuwenburgh C,
     Wohlgemuth SE (2012) Skeletal muscle apoptotic signaling predicts thigh
     muscle volume and gait speed in community-dwelling older persons: an
     exploratory study. PLoS One 7:e32829. doi:10.1371/journal.pone.0032829
     
     Article CAS PubMed PubMed Central  Google Scholar 

 7.  Kuno S, Katsuta S, Akisada M, Anno I, Matsumoto K (1990) Effect of strength
     training on the relationship between magnetic resonance relaxation time and
     muscle fibre composition. Eur J Appl Physiol Occup Physiol 61:33–36.
     doi:10.1007/BF00236690
     
     Article CAS PubMed  Google Scholar 

 8.  Prado CM, Heymsfield SB (2014) Lean tissue imaging: a new era for
     nutritional assessment and intervention. JPEN J Parenter Enteral Nutr
     38:940–953. doi:10.1177/0148607114550189
     
     Article PubMed PubMed Central  Google Scholar 

 9.  Shen W, Punyanitya M, Wang Z, Gallagher D, St-Onge MP, Albu J, Heymsfield
     SB, Heshka S (2004) Total body skeletal muscle and adipose tissue volumes:
     estimation from a single abdominal cross-sectional image. J Appl Physiol
     (1985) 97:2333–2338. doi:10.1152/japplphysiol.00744.2004
     
     Article  Google Scholar 

 10. Ferland M, Després JP, Tremblay A, Pinault S, Nadeau A, Moorjani S, Lupien
     PJ, Thériault G, Bouchard C (1989) Assessment of adipose tissue
     distribution by computed axial tomography in obese women: association with
     body density and anthropometric measurements. Br J Nutr 61:139–148.
     doi:10.1079/BJN19890104
     
     Article CAS PubMed  Google Scholar 

 11. Mattsson S, Thomas BJ (2006) Development of methods for body composition
     studies. Phys Med Biol 51:R203–R228. doi:10.1088/0031-9155/51/13/R13
     
     Article CAS PubMed  Google Scholar 

 12. Hangartner TN, Warner S, Braillon P, Jankowski L, Shepherd J (2013) The
     Official Positions of the International Society for Clinical Densitometry:
     acquisition of dual-energy X-ray absorptiometry body composition and
     considerations regarding analysis and repeatability of measures. J Clin
     Densitom 16:520–536. doi:10.1016/j.jocd.2013.08.007
     
     Article PubMed  Google Scholar 

 13. Levine JA, Abboud L, Barry M, Reed JE, Sheedy PF, Jensen MD (2000)
     Measuring leg muscle and fat mass in humans: comparison of CT and
     dual-energy X-ray absorptiometry. J Appl Physiol (1985) 88:452–456
     
     CAS  Google Scholar 

 14. Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB,
     Stamm E, Newman AB (2001) Attenuation of skeletal muscle and strength in
     the elderly: The Health ABC Study. J Appl Physiol (1985) 90:2157–2165
     
     CAS  Google Scholar 

 15. Lang T, Cauley JA, Tylavsky F, Bauer D, Cummings S, Harris TB; Health ABC
     Study (2010) Computed tomographic measurements of thigh muscle
     cross-sectional area and attenuation coefficient predict hip fracture: the
     health, aging, and body composition study. J Bone Miner Res 25;513–519.
     doi:10.1359/jbmr.090807
     
     Article PubMed  Google Scholar 

 16. Damilakis J, Adams JE, Guglielmi G, Link TM (2010) Radiation exposure in
     X-ray-based imaging techniques used in osteoporosis. Eur Radiol
     20:2707–2714. doi:10.1007/s00330-010-1845-0
     
     Article PubMed PubMed Central  Google Scholar 

 17. Frank-Wilson AW, Johnston JD, Olszynski WP, Kontulainen SA (2015)
     Measurement of muscle and fat in postmenopausal women: precision of
     previously reported pQCT imaging methods. Bone 75:49–54.
     doi:10.1016/j.bone.2015.01.016
     
     Article PubMed  Google Scholar 

 18. Lustgarten MS, Fielding RA (2011) Assessment of analytical methods used to
     measure changes in body composition in the elderly and recommendations for
     their use in phase II clinical trials. J Nutr Health Aging 15:368–375.
     doi:10.1007/s12603-011-0049-x
     
     Article CAS PubMed PubMed Central  Google Scholar 

 19. Damilakis J, Perisinakis K, Vrahoriti H, Kontakis G, Varveris H,
     Gourtsoyiannis N (2002) Embryo/fetus radiation dose and risk from dual
     X-ray absorptiometry examinations. Osteoporos Int 13:716–722.
     doi:10.1007/s001980200098
     
     Article CAS PubMed  Google Scholar 

 20. Heymsfield SB, Adamek M, Gonzalez MC, Jia G, Thomas DM (2014) Assessing
     skeletal muscle mass: historical overview and state of the art. J Cachexia
     Sarcopenia Muscle 5:9–18. doi:10.1007/s13539-014-0130-5
     
     Article PubMed PubMed Central  Google Scholar 

 21. Proctor DN, O’Brien PC, Atkinson EJ, Nair KS (1999) Comparison of
     techniques to estimate total body skeletal muscle mass in people of
     different age groups. Am J Physiol 277:E489–E495
     
     CAS PubMed  Google Scholar 

 22. Bredella MA, Ghomi RH, Thomas BJ, Torriani M, Brick DJ, Gerweck AV, Misra
     M, Klibanski A, Miller KK (2010) Comparison of DXA and CT in the assessment
     of body composition in premenopausal women with obesity and anorexia
     nervosa. Obesity (Silver Spring) 18:2227–2233. doi:10.1038/oby.2010.5
     
     Article  Google Scholar 

 23. Marzetti E, Calvani R, Landi F, Hoogendijk EO, Fougère B, Vellas B, Pahor
     M, Bernabei R, Cesari M; SPRINTT Consortium (2015) Innovative Medicines
     Initiative: The SPRINTT Project. J Frailty Aging 4:207–208.
     doi:10.14283/jfa.2015.69
     
     CAS  Google Scholar 

 24. Wagner DR (2013) Ultrasound as a tool to assess body fat. J
     Obes 2013:280713. doi: 10.1155/2013/280713
     
     PubMed PubMed Central  Google Scholar 

 25. Tillquist M, Kutsogiannis DJ, Wischmeyer PE, Kummerlen C, Leung R, Stollery
     D, Karvellas CJ, Preiser JC, Bird N, Kozar R, Heyland DK (2013) Bedside
     ultrasound is a practical and reliable measurement tool for assessing
     quadriceps muscle layer thickness. JPEN J Parenter Enteral Nutr 38:886–890.
     doi:10.1177/0148607113501327
     
     Article PubMed PubMed Central  Google Scholar 

 26. Mayans D, Cartwright MS, Walker FO (2012) Neuromuscular ultrasonography:
     quantifying muscle and nerve measurements. Phys Med Rehabil Clin N Am
     23:133–148. doi:10.1016/j.pmr.2011.11.009
     
     Article PubMed  Google Scholar 

 27. Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI (1985) Assessment of
     fat-free mass using bioelectrical impedance measurements of the human body.
     Am J Clin Nutr 41:810–817
     
     CAS PubMed  Google Scholar 

 28. Janssen I, Heymsfield SB, Baumgartner RN, Ross R (2000) Estimation of
     skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol
     (1985) 89:465–471
     
     CAS  Google Scholar 

 29. Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R (2004)
     Skeletal muscle cutpoints associated with elevated physical disability risk
     in older men and women. Am J Epidemiol 159:413–421
     
     Article PubMed  Google Scholar 

 30. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F,
     Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M,
     Zamboni M; European Working Group on Sarcopenia in Older People (2010)
     Sarcopenia: European consensus on definition and diagnosis: report of the
     European Working Group on Sarcopenia in Older People. Age Ageing
     39:412–423. doi:10.1093/ageing/afq034
     
     Article PubMed PubMed Central  Google Scholar 

 31. Chumlea WC, Guo SS, Kuczmarski RJ, Flegal KM, Johnson CL, Heymsfield SB,
     Lukaski HC, Friedl K, Hubbard VS (2002) Body composition estimates from
     NHANES III bioelectrical impedance data. Int J Obes Relat Metab Disord
     26:1596–1609. doi:10.1038/sj.ijo.0802167
     
     Article CAS PubMed  Google Scholar 

 32. NIH Expert Panel (1996) Bioelectrical impedance analysis in body
     composition measurement: National Institutes of Health Technology
     Assessment Conference Statement. Am J Clin Nutr 64(3 Suppl):524S–532S
     
     Google Scholar 

 33. Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S,
     Cederholm T, Coats AJ, Cummings SR, Evans WJ, Fearon K, Ferrucci L,
     Fielding RA, Guralnik JM, Harris TB, Inui A, Kalantar-Zadeh K, Kirwan BA,
     Mantovani G, Muscaritoli M, Newman AB, Rossi-Fanelli F, Rosano GM,
     Roubenoff R, Schambelan M, Sokol GH, Storer TW, Vellas B, von Haehling S,
     Yeh SS, Anker SD; Society on Sarcopenia, Cachexia and Wasting Disorders
     Trialist Workshop (2011) Sarcopenia with limited mobility: an international
     consensus. J Am Med Dir Assoc 12:403–409. doi:10.1016/j.jamda.2011.04.014
     
     Article PubMed PubMed Central  Google Scholar 

 34. Rutkove SB, Aaron R, Shiffman CA (2002) Localized bioimpedance analysis in
     the evaluation of neuromuscular disease. Muscle Nerve 25:390–397.
     doi:10.1002/mus.10048
     
     Article PubMed  Google Scholar 

 35. Rutkove SB (2009) Electrical impedance myography: Background, current
     state, and future directions. Muscle Nerve 40:936–946.
     doi:10.1002/mus.21362
     
     Article PubMed PubMed Central  Google Scholar 

 36. Aaron R, Shiffman CA (2000) Using localized impedance measurements to study
     muscle changes in injury and disease. Ann N Y Acad Sci 904:171–180.
     doi:10.1111/j.1749-6632.2000.tb06443.x
     
     Article CAS PubMed  Google Scholar 

 37. Shiffman CA, Aaron R, Amoss V, Therrien J, Coomler K (1999) Resistivity and
     phase in localized BIA. Phys Med Biol 44:2409–2429.
     doi:10.1088/0031-9155/44/10/304
     
     Article CAS PubMed  Google Scholar 

 38. Faes TJ, van der Meij HA, de Munck JC, Heethaar RM (1999) The electric
     resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review
     studies. Physiol Meas 20:R1–R10. doi:10.1088/0967-3334/20/4/201
     
     Article CAS PubMed  Google Scholar 

 39. Landi F, Martone AM, Calvani R, Marzetti E (2014) Sarcopenia risk screening
     tool: a new strategy for clinical practice. J Am Med Dir Assoc 15:613–614.
     doi:10.1016/j.jamda.2014.05.015
     
     Article PubMed  Google Scholar 

 40. Landi F, Russo A, Liperoti R, Pahor M, Tosato M, Capoluongo E, Bernabei R,
     Onder G (2010) Midarm muscle circumference, physical performance and
     mortality: results from the aging and longevity study in the Sirente
     geographic area (ilSIRENTE study). Clin Nutr 29:441–447.
     doi:10.1016/j.clnu.2009.12.006
     
     Article PubMed  Google Scholar 

 41. Landi F, Onder G, Russo A, Liperoti R, Tosato M, Martone AM, Capoluongo E,
     Bernabei R (2014) Calf circumference, frailty and physical performance
     among older adults living in the community. Clin Nutr 33:539–544.
     doi:10.1016/j.clnu.2013.07.013
     
     Article PubMed  Google Scholar 

 42. Wijnhoven HA, van Bokhorst-de van der Schueren MA, Heymans MW, de Vet HC,
     Kruizenga HM, Twisk JW, Visser M (2010) Low mid-upper arm circumference,
     calf circumference, and body mass index and mortality in older persons. J
     Gerontol A Biol Sci Med Sci 65:1107–1114. doi:10.1093/gerona/glq100
     
     Article PubMed  Google Scholar 

 43. Rolland Y, Lauwers-Cances V, Cournot M, Nourhashémi F, Reynish W, Rivière
     D, Vellas B, Grandjean H (2003) Sarcopenia, calf circumference, and
     physical function of elderly women: a cross-sectional study. J Am Geriatr
     Soc 51:1120–1124. doi:10.1046/j.1532-5415.2003.51362.x
     
     Article PubMed  Google Scholar 

 44. de Onis M, Habicht JP (1996) Anthropometric reference data for
     international use: recommendations from a World Health Organization Expert
     Committee. Am J Clin Nutr 64:650–658
     
     PubMed  Google Scholar 

 45. Antonelli Incalzi R, Landi F, Cipriani L, Bruno E, Pagano F, Gemma A,
     Capparella O, Carbonin PU (1996) Nutritional assessment: a primary
     component of multidimensional geriatric assessment in the acute care
     setting. J Am Geriatr Soc 44:166–174. doi:10.1111/j.1532-5415.1996.tb02434
     
     Article CAS PubMed  Google Scholar 

 46. Calvani R, Marini F, Cesari M, Tosato M, Anker SD, von Haehling S, Miller
     RR, Bernabei R, Landi F, Marzetti E; SPRINTT consortium (2015) Biomarkers
     for physical frailty and sarcopenia: state of the science and future
     developments. J Cachexia Sarcopenia Muscle 6;278–286.
     doi:10.1002/jcsm.12051
     
     Article PubMed PubMed Central  Google Scholar 

 47. Heymsfield SB, Gallagher D, Visser M, Nuñez C, Wang ZM (1995) Measurement
     of skeletal muscle: laboratory and epidemiological methods. J Gerontol A
     Biol Sci Med Sci 50 Spec No:23–29. doi:10.1093/gerona/50A
     
     PubMed  Google Scholar 

 48. Kehayias JJ, Fiatarone MA, Zhuang H, Roubenoff R (1997) Total body
     potassium and body fat: relevance to aging. Am J Clin Nutr 66:904–910
     
     CAS PubMed  Google Scholar 

 49. Wielopolski L, Ramirez LM, Gallagher D, Sarkar SR, Zhu F, Kaysen GA, Levin
     NW, Heymsfield SB, Wang ZM (2006) Measuring partial body potassium in the
     arm versus total body potassium. J Appl Physiol (1985) 101;945–949.
     doi:10.1152/japplphysiol.00999.2005
     
     Article CAS  Google Scholar 

 50. Wielopolski L, Ramirez LM, Spungen AM, Swaby S, Asselin P, Bauman WA (2009)
     Measuring partial body potassium in the legs of patients with spinal cord
     injury: a new approach. J Appl Physiol (1985) 106;268–273.
     doi:10.1152/japplphysiol.90435.2008
     
     Article CAS  Google Scholar 

 51. Heymsfield SB, Arteaga C, McManus C, Smith J, Moffitt S (1983) Measurement
     of muscle mass in humans: validity of the 24-hour urinary creatinine
     method. Am J Clin Nutr 37:478–494
     
     CAS PubMed  Google Scholar 

 52. Keshaviah PR, Nolph KD, Moore HL, Prowant B, Emerson PF, Meyer M,
     Twardowski ZJ, Khanna R, Ponferrada L, Collins A (1994) Lean body mass
     estimation by creatinine kinetics. J Am Soc Nephrol 4:1475–1485
     
     CAS PubMed  Google Scholar 

 53. Bhatla B, Moore H, Emerson P, Keshaviah P, Prowant B, Nolph KD, Singh A
     (1995) Lean body mass estimation by creatinine kinetics, bioimpedance, and
     dual energy X-ray absorptiometry in patients on continuous ambulatory
     peritoneal dialysis. ASAIO J 41:M442–M446
     
     Article CAS PubMed  Google Scholar 

 54. Patel SS, Molnar MZ, Tayek JA, Ix JH, Noori N, Benner D, Heymsfield S,
     Kopple JD, Kovesdy CP, Kalantar-Zadeh K (2013) Serum creatinine as a marker
     of muscle mass in chronic kidney disease: results of a cross-sectional
     study and review of literature. J Cachexia Sarcopenia Muscle 4:19–29.
     doi:10.1007/s13539-012-0079-1
     
     Article PubMed  Google Scholar 

 55. Wang ZM, Gallagher D, Nelson ME, Matthews DE, Heymsfield SB (1996)
     Total-body skeletal muscle mass: evaluation of 24-h urinary creatinine
     excretion by computerized axial tomography. Am J Clin Nutr 63:863–869
     
     CAS PubMed  Google Scholar 

 56. Gerber LM, Mann SJ (2014) Development of a model to estimate 24-hour
     urinary creatinine excretion. J Clin Hypertens (Greenwich) 16:367–371.
     doi:10.1111/jch.12294
     
     Article CAS  Google Scholar 

 57. Clark RV, Walker AC, O’Connor-Semmes RL, Leonard MS, Miller RR, Stimpson
     SA, Turner SM, Ravussin E, Cefalu WT, Hellerstein MK, Evans WJ (2014) Total
     body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in
     humans. J Appl Physiol (1985) 116:1605–1613.
     doi:10.1152/japplphysiol.00045.2014
     
     Article CAS  Google Scholar 

 58. Stimpson SA, Turner SM, Clifton LG, Poole JC, Mohammed HA, Shearer TW,
     Waitt GM, Hagerty LL, Remlinger KS, Hellerstein MK, Evans WJ (2012)
     Total-body creatine pool size and skeletal muscle mass determination by
     creatine-(methyl-D3) dilution in rats. J Appl Physiol (1985) 112:1940–1948.
     doi:10.1152/japplphysiol.00122.2012
     
     Article CAS  Google Scholar 

 59. Stimpson SA, Leonard MS, Clifton LG, Poole JC, Turner SM, Shearer TW,
     Remlinger KS, Clark RV, Hellerstein MK, Evans WJ (2013) Longitudinal
     changes in total body creatine pool size and skeletal muscle mass using the
     D3-creatine dilution method. J Cachexia Sarcopenia Muscle.
     doi:10.1007/s13539-013-0110-1
     
     PubMed PubMed Central  Google Scholar 

 60. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB,
     Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB,
     Shardell MD, Dam TT, Vassileva MT (2014) The FNIH sarcopenia project:
     rationale, study description, conference recommendations, and final
     estimates. J Gerontol A Biol Sci Med Sci 69:547–558.
     doi:10.1093/gerona/glu010
     
     Article PubMed PubMed Central  Google Scholar 

 61. Cawthon PM, Peters KW, Shardell MD, McLean RR, Dam TT, Kenny AM, Fragala
     MS, Harris TB, Kiel DP, Guralnik JM, Ferrucci L, Kritchevsky SB, Vassileva
     MT, Studenski SA, Alley DE (2014) Cutpoints for low appendicular lean mass
     that identify older adults with clinically significant weakness. J Gerontol
     A Biol Sci Med Sci 69:567–575. doi:10.1093/gerona/glu023
     
     Article PubMed PubMed Central  Google Scholar 

 62. McLean RR, Shardell MD, Alley DE, Cawthon PM, Fragala MS, Harris TB, Kenny
     AM, Peters KW, Ferrucci L, Guralnik JM, Kritchevsky SB, Kiel DP, Vassileva
     MT, Xue QL, Perera S, Studenski SA, Dam TT (2014) Criteria for clinically
     relevant weakness and low lean mass and their longitudinal association with
     incident mobility impairment and mortality: the foundation for the National
     Institutes of Health (FNIH) sarcopenia project. J Gerontol A Biol Sci Med
     Sci 69:576–583. doi:10.1093/gerona/glu012
     
     Article PubMed PubMed Central  Google Scholar 


DISCOVER CONTENT

 * Journals A-Z
 * Books A-Z


PUBLISH WITH US

 * Publish your research
 * Open access publishing


PRODUCTS AND SERVICES

 * Our products
 * Librarians
 * Societies
 * Partners and advertisers


OUR IMPRINTS

 * Springer
 * Nature Portfolio
 * BMC
 * Palgrave Macmillan
 * Apress

 * Your privacy choices/Manage cookies
 * Your US state privacy rights
 * Accessibility statement
 * Terms and conditions
 * Privacy policy
 * Help and support

217.114.215.133

Not affiliated

© 2023 Springer Nature