www.nature.com Open in urlscan Pro
151.101.0.95  Public Scan

Submitted URL: https://go.redirectingat.com/?id=92X1590019&xcust=livescience_us_8261889709336885880&xs=1&url=https%3A%2F%2Fwww.nature.com%2F...
Effective URL: https://www.nature.com/articles/s41586-024-07339-7?utm_medium=affiliate&utm_source=commission_junction&utm_campaign=CON...
Submission: On May 23 via manual from US — Scanned from DE

Form analysis 2 forms found in the DOM

GET /search

<form class="c-header__search-form" action="/search" method="get" role="search" autocomplete="off" data-test="inline-search">
  <label class="c-header__heading" for="keywords">Search articles by subject, keyword or author</label>
  <div class="c-header__search-layout c-header__search-layout--max-width">
    <div>
      <input type="text" required="" class="c-header__input" id="keywords" name="q" value="">
    </div>
    <div class="c-header__search-layout">
      <div>
        <label for="results-from" class="c-header__visually-hidden">Show results from</label>
        <select id="results-from" name="journal" class="c-header__select">
          <option value="" selected="">All journals</option>
          <option value="nature">This journal</option>
        </select>
      </div>
      <div>
        <button type="submit" class="c-header__search-button">Search</button>
      </div>
    </div>
  </div>
</form>

POST https://www.nature.com/briefing/briefing

<form action="https://www.nature.com/briefing/briefing" method="post" data-location="banner" data-track="submit||nature_briefing_sign_up" data-track-action="transmit-form" data-track-category="nature briefing"
  data-track-label="Briefing banner submit: Flagship">
  <input id="briefing-banner-signup-form-input-track-originReferralPoint" type="hidden" name="track_originReferralPoint" value="MainBriefingBanner">
  <input id="briefing-banner-signup-form-input-track-formType" type="hidden" name="track_formType" value="DirectEmailBanner">
  <input type="hidden" value="false" name="gdpr_tick" id="gdpr_tick">
  <input type="hidden" value="false" name="marketing" id="marketing_input">
  <input type="hidden" value="false" name="marketing_tick" id="marketing_tick">
  <input type="hidden" value="MainBriefingBanner" name="brieferEntryPoint" id="brieferEntryPoint">
  <label class="nature-briefing-banner__email-label" for="emailAddress">Email address</label>
  <div class="nature-briefing-banner__email-wrapper">
    <input class="nature-briefing-banner__email-input box-sizing text14" type="email" id="emailAddress" name="emailAddress" value="" placeholder="e.g. jo.smith@university.ac.uk" required="" data-test-element="briefing-emailbanner-email-input">
    <input type="hidden" value="true" name="N:nature_briefing_daily" id="defaultNewsletter">
    <button type="submit" class="nature-briefing-banner__submit-button box-sizing text14" data-test-element="briefing-emailbanner-signup-button">Sign up</button>
  </div>
  <div class="nature-briefing-banner__checkbox-wrapper grid grid-12 last">
    <input class="nature-briefing-banner__checkbox-checkbox" id="gdpr-briefing-banner-checkbox" type="checkbox" name="gdpr" value="true" data-test-element="briefing-emailbanner-gdpr-checkbox" required="">
    <label class="nature-briefing-banner__checkbox-label box-sizing text13 sans-serif block tighten-line-height" for="gdpr-briefing-banner-checkbox">I agree my information will be processed in accordance with the <em>Nature</em> and Springer Nature
      Limited <a href="https://www.nature.com/info/privacy">Privacy Policy</a>.</label>
  </div>
</form>

Text Content

YOUR PRIVACY, YOUR CHOICE

We use essential cookies to make sure the site can function. We, and our 208
partners, also use optional cookies and similar technologies for advertising,
personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to
store and access personal data on your device, such as browsing behaviour and
unique identifiers. Some third parties are outside of the European Economic
Area, with varying standards of data protection. See our privacy policy for more
information on the use of your personal data. Your consent choices apply to
nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage
preferences'.
You can also change your preferences or withdraw consent at any time via 'Your
privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

STORE AND/OR ACCESS INFORMATION ON A DEVICE

Cookies, device or similar online identifiers (e.g. login-based identifiers,
randomly assigned identifiers, network based identifiers) together with other
information (e.g. browser type and information, language, screen size, supported
technologies etc.) can be stored or read on your device to recognise it each
time it connects to an app or to a website, for one or several of the purposes
presented here.

PERSONALISED ADVERTISING AND CONTENT, ADVERTISING AND CONTENT MEASUREMENT,
AUDIENCE RESEARCH AND SERVICES DEVELOPMENT

Advertising and content can be personalised based on your profile. Your activity
on this service can be used to build or improve a profile about you for
personalised advertising and content. Advertising and content performance can be
measured. Reports can be generated based on your activity and those of others.
Your activity on this service can help develop and improve products and
services.

Accept all cookies Reject optional cookies Manage preferences
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited
support for CSS. To obtain the best experience, we recommend you use a more up
to date browser (or turn off compatibility mode in Internet Explorer). In the
meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.

Advertisement


 * View all journals
 * Search
   
   
   SEARCH
   
   Search articles by subject, keyword or author
   Show results from All journals This journal
   Search
   Advanced search
   
   
   QUICK LINKS
   
    * Explore articles by subject
    * Find a job
    * Guide to authors
    * Editorial policies

 * Log in

 * Explore content
   
   
   EXPLORE CONTENT
   
    * Research articles
    * News
    * Opinion
    * Research Analysis
    * Careers
    * Books & Culture
    * Podcasts
    * Videos
    * Current issue
    * Browse issues
    * Collections
    * Subjects
   
    * Follow us on Facebook
    * Follow us on Twitter
    * Subscribe
    * Sign up for alerts
    * RSS feed

 * About the journal
   
   
   ABOUT THE JOURNAL
   
    * Journal Staff
    * About the Editors
    * Journal Information
    * Our publishing models
    * Editorial Values Statement
    * Journal Metrics
    * Awards
    * Contact
    * Editorial policies
    * History of Nature
    * Send a news tip

 * Publish with us
   
   
   PUBLISH WITH US
   
    * For Authors
    * For Referees
    * Language editing services
    * Submit manuscript

 * Subscribe

 * Sign up for alerts
 * RSS feed

 1. nature
 2. articles
 3. article

 * Article
 * Published: 24 April 2024


GROWTH OF DIAMOND IN LIQUID METAL AT 1 ATM PRESSURE

 * Yan Gong  ORCID: orcid.org/0000-0001-6644-69941,2,
 * Da Luo  ORCID: orcid.org/0000-0002-9128-67821,
 * Myeonggi Choe1,3,
 * Yongchul Kim1,2,
 * Babu Ram1,
 * Mohammad Zafari1,
 * Won Kyung Seong  ORCID: orcid.org/0009-0004-8914-86221,
 * Pavel Bakharev  ORCID: orcid.org/0000-0001-7458-68231,
 * Meihui Wang  ORCID: orcid.org/0000-0001-5497-57091 nAff7,
 * In Kee Park2,
 * Seulyi Lee4,
 * Tae Joo Shin  ORCID: orcid.org/0000-0002-1438-32985,
 * Zonghoon Lee1,3,
 * Geunsik Lee  ORCID: orcid.org/0000-0002-2477-99902 &
 * …
 * Rodney S. Ruoff  ORCID: orcid.org/0000-0002-6599-67641,2,3,6 

Show authors

Nature volume 629, pages 348–354 (2024)Cite this article

 * 13k Accesses

 * 496 Altmetric

 * Metrics details


ABSTRACT

Natural diamonds were (and are) formed (thousands of million years ago) in the
upper mantle of Earth in metallic melts at temperatures of 900–1,400 °C and at
pressures of 5–6 GPa (refs. 1,2). Diamond is thermodynamically stable under
high-pressure and high-temperature conditions as per the phase diagram of
carbon3. Scientists at General Electric invented and used a high-pressure and
high-temperature apparatus in 1955 to synthesize diamonds by using molten iron
sulfide at about 7 GPa and 1,600 °C (refs. 4,5,6). There is an existing model
that diamond can be grown using liquid metals only at both high pressure and
high temperature7. Here we describe the growth of diamond crystals and
polycrystalline diamond films with no seed particles using liquid metal but at
1 atm pressure and at 1,025 °C, breaking this pattern. Diamond grew in the
subsurface of liquid metal composed of gallium, iron, nickel and silicon, by
catalytic activation of methane and diffusion of carbon atoms into and within
the subsurface regions. We found that the supersaturation of carbon in the
liquid metal subsurface leads to the nucleation and growth of diamonds, with Si
playing an important part in stabilizing tetravalently bonded carbon clusters
that play a part in nucleation. Growth of (metastable) diamond in liquid metal
at moderate temperature and 1 atm pressure opens many possibilities for further
basic science studies and for the scaling of this type of growth.

Access through your institution
Buy or subscribe


This is a preview of subscription content, access via your institution


ACCESS OPTIONS

Access through your institution

Access through your institution
Change institution
Buy or subscribe

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Learn more

Subscribe to this journal

Receive 51 print issues and online access

199,00 € per year

only 3,90 € per issue

Learn more

Buy this article

 * Purchase on Springer Link
 * Instant access to full article PDF

Buy now

Prices may be subject to local taxes which are calculated during checkout




ADDITIONAL ACCESS OPTIONS:

 * Log in
 * Learn about institutional subscriptions
 * Read our FAQs
 * Contact customer support

Fig. 1: Synthesis of diamond on a liquid metal surface that is at an interface
with graphite.

Fig. 2: Characterization of 13C-labelled as-grown diamond.

Fig. 3: TEM data of cross-sectional samples prepared by SEM-FIB.



SIMILAR CONTENT BEING VIEWED BY OTHERS


DIAMOND GROWTH FROM ORGANIC COMPOUNDS IN HYDROUS FLUIDS DEEP WITHIN THE EARTH

Article Open access 30 October 2019


THE COMPOSITION OF THE FLUID PHASE IN INCLUSIONS IN SYNTHETIC HPHT DIAMONDS
GROWN IN SYSTEM FE–NI–TI–C

Article Open access 24 January 2022


RARE-EARTH METAL CATALYSTS FOR HIGH-PRESSURE SYNTHESIS OF RARE DIAMONDS

Article Open access 19 April 2021


DATA AVAILABILITY

The published data of this study are available on the Zenodo public database at
https://doi.org/10.5281/zenodo.10803625 (ref. 58). Source data are provided with
this paper.


REFERENCES

 1.  Haggerty, S. E. Diamond genesis in a multiply-constrained model. Nature
     320, 34–38 (1986).
     
     Article  ADS  CAS  Google Scholar 

 2.  Pal’yanov, Y. N., Sokol, A. G., Borzdov, Y. M., Khokhryakov, A. F. &
     Sobolev, N. V. Diamond formation from mantle carbonate fluids. Nature 400,
     417–418 (1999).
     
     Article  ADS  Google Scholar 

 3.  Bundy, F. P. et al. The pressure-temperature phase and transformation
     diagram for carbon; updated through 1994. Carbon 34, 141–153 (1996).
     
     Article  CAS  Google Scholar 

 4.  Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorfjun, R. H. Man-made
     diamonds. Nature 176, 51–55 (1955).
     
     Article  ADS  CAS  Google Scholar 

 5.  Bovenkerk, H. P., Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorf, R. H.
     Preparation of diamond. Nature 184, 1094–1098 (1959).
     
     Article  ADS  CAS  Google Scholar 

 6.  Hazen, R. M. & Hazen, R. M. The Diamond Makers (Cambridge Univ. Press,
     1999).

 7.  D’Haenens-Johansson, U. F. S., Butler, J. E. & Katrusha, A. N. Synthesis of
     diamonds and their identification. Rev. Mineral. Geochem. 88, 689–753
     (2022).
     
     Article  Google Scholar 

 8.  Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys.
     Rep. 528, 1–45 (2013).
     
     Article  ADS  CAS  Google Scholar 

 9.  Ruf, M., Wan, N. H., Choi, H., Englund, D. & Hanson, R. Quantum networks
     based on color centers in diamond. J. Appl. Phys. 130, 070901 (2021).
     
     Article  ADS  CAS  Google Scholar 

 10. Shikata, S. Single crystal diamond wafers for high power electronics. Diam.
     Relat. Mater. 65, 168–175 (2016).
     
     Article  ADS  CAS  Google Scholar 

 11. Railkar, T. A. et al. A Critical Review of Chemical Vapor-Deposited (CVD)
     Diamond for Electronic Applications. Crit. Rev. Solid State Mater. Sci. 25,
     163–277 (2000).
     
     Article  ADS  CAS  Google Scholar 

 12. Butler, J. E., Mankelevich, Y. A., Cheesman, A., Ma, J. & Ashfold, M. N. R.
     Understanding the chemical vapor deposition of diamond: recent progress. J.
     Phys. Condens. Matter 21, 364201 (2009).
     
     Article  CAS  PubMed  Google Scholar 

 13. Yamasaki, S., Pobedinskas, P. & Nicley, S. S. Recent advances in diamond
     science and technology. Phys. Status Solidi A 214, 1770167 (2017).
     
     Article  Google Scholar 

 14. Yarbrough, W. A. & Messier, R. J. S. Current issues and problems in the
     chemical vapor deposition of diamond. Science 247, 688–696 (1990).
     
     Article  ADS  CAS  PubMed  Google Scholar 

 15. Butler, J. E. & Windischmann, H. Developments in CVD-diamond synthesis
     during the past decade. MRS Bull. 23, 22–27 (1998).
     
     Article  CAS  Google Scholar 

 16. Schwander, M. & Partes, K. J. D. A review of diamond synthesis by CVD
     processes. Diam. Relat. Mater. 20, 1287–1301 (2011).
     
     Article  ADS  CAS  Google Scholar 

 17. Linde, O., Geyler, O. & Epstein, A. The Global Diamond Industry 2018: A
     Resilient Industry Shines Through (Bain, 2018).

 18. Dossa, S. S. et al. Analysis of the high-pressure high-temperature (HPHT)
     growth of single crystal diamond. J. Cryst. Growth 609, 127150 (2023).
     
     Article  CAS  Google Scholar 

 19. Ferro, S. Synthesis of diamond. J. Mater. Chem. 12, 2843–2855 (2002).
     
     Article  CAS  Google Scholar 

 20. Eaton-Magaña, S., Shigley, J. E. & Breeding, C. M. Observations on
     HPHT-grown synthetic diamonds: a review. Gems Gemol. 53, 262–284 (2017).
     
     Article  Google Scholar 

 21. Sumiya, H., Harano, K. & Tamasaku, K. HPHT synthesis and crystalline
     quality of large high-quality (001) and (111) diamond crystals. Diam.
     Relat. Mater. 58, 221–225 (2015).
     
     Article  ADS  CAS  Google Scholar 

 22. Kalantar-Zadeh, K. et al. Emergence of liquid metals in nanotechnology. ACS
     Nano 13, 7388–7395 (2019).
     
     Article  CAS  PubMed  Google Scholar 

 23. Taccardi, N. et al. Gallium-rich Pd–Ga phases as supported liquid metal
     catalysts. Nat. Chem. 9, 862–867 (2017).
     
     Article  CAS  PubMed  Google Scholar 

 24. Daeneke, T. et al. Liquid metals: fundamentals and applications in
     chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018).
     
     Article  CAS  PubMed  Google Scholar 

 25. Camacho-Mojica, D. C. et al. Charge transfer during the dissociation of H2
     and the charge state of H atoms in liquid gallium. J. Phys. Chem. C 123,
     26769–26776 (2019).
     
     Article  CAS  Google Scholar 

 26. Ueki, R. et al. In-situ observation of surface graphitization of gallium
     droplet and concentration of carbon in liquid gallium. Jpn. J. Appl. Phys.
     51, 06FD28 (2012).
     
     Article  Google Scholar 

 27. Fujita, J.-I. et al. Near room temperature chemical vapor deposition of
     graphene with diluted methane and molten gallium catalyst. Sci. Rep. 7,
     12371 (2017).
     
     Article  ADS  PubMed  PubMed Central  Google Scholar 

 28. Upham, D. C. et al. Catalytic molten metals for the direct conversion of
     methane to hydrogen and separable carbon. Science 358, 917–921 (2017).
     
     Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

 29. Allioux, F.-M. et al. Carbonization of low thermal stability polymers at
     the interface of liquid metals. Carbon 171, 938–945 (2021).
     
     Article  CAS  Google Scholar 

 30. Kawasaki, H. et al. A liquid metal catalyst for the conversion of ethanol
     into graphitic carbon layers under an ultrasonic cavitation field. Chem.
     Commun. 58, 7741–7744 (2022).
     
     Article  CAS  Google Scholar 

 31. Zuraiqi, K. et al. Direct conversion of CO2 to solid carbon by Ga-based
     liquid metals. Energy Environ. Sci. 15, 595–600 (2022).
     
     Article  CAS  Google Scholar 

 32. Li, P. C. Preparation of single-crystal graphite from melts. Nature 192,
     864–865 (1961).
     
     Article  ADS  CAS  Google Scholar 

 33. Tulloch, H. J. C. & Young, D. A. Synthetic single crystals of graphite.
     Nature 211, 730–731 (1966).
     
     Article  ADS  Google Scholar 

 34. Sumiyoshi, Y., Ushio, M. & Suzuki, S. Formation of graphite single crystal
     from iron solution by the slow cooling method. Bull. Chem. Soc. Jpn. 61,
     1577–1585 (1988).
     
     Article  CAS  Google Scholar 

 35. Noda, T., Sumiyoshi, Y. & Ito, N. Growth of single crystals of graphite
     from a carbon-iron melt. Carbon 6, 813–816 (1968).
     
     Article  CAS  Google Scholar 

 36. Austerman, S. B., Myron, S. M. & Wagner, J. W. Growth and characterization
     of graphite single crystals. Carbon 5, 549–557 (1967).
     
     Article  CAS  Google Scholar 

 37. Merel, P., Tabbal, M., Chaker, M., Moisa, S. & Margot, J. Direct evaluation
     of the sp3 content in diamond-like-carbon films by XPS. Appl. Surf. Sci.
     136, 105–110 (1998).
     
     Article  ADS  CAS  Google Scholar 

 38. Chu, C., d’Evelyn, M., Hauge, R. & Margrave, J. Mechanism of diamond growth
     by chemical vapor deposition on diamond (100), (111), and (110) surfaces:
     carbon-13 studies. J. Appl. Phys. 70, 1695–1705 (1991).
     
     Article  ADS  CAS  Google Scholar 

 39. Cai, W. et al. Synthesis and solid-state NMR structural characterization of
     13C-labeled graphite oxide. Science 321, 1815–1817 (2008).
     
     Article  ADS  CAS  PubMed  Google Scholar 

 40. Yang, B. et al. Fabrication of silicon-vacancy color centers in diamond
     films: tetramethylsilane as a new dopant source. CrystEngComm 20, 1158–1167
     (2018).
     
     Article  CAS  Google Scholar 

 41. Feng, Z., Lin, Y., Tian, C., Hu, H. & Su, D. Combined study of the ground
     and excited states in the transformation of nanodiamonds into carbon onions
     by electron energy-loss spectroscopy. Sci. Rep. 9, 3784 (2019).
     
     Article  ADS  PubMed  PubMed Central  Google Scholar 

 42. Luo, K. et al. Coherent interfaces govern direct transformation from
     graphite to diamond. Nature 607, 486–491 (2022).
     
     Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

 43. Tulić, S. et al. Covalent diamond–graphite bonding: mechanism of catalytic
     transformation. ACS Nano 13, 4621–4630 (2019).
     
     Article  PubMed  PubMed Central  Google Scholar 

 44. Wi, T.-G., Park, Y.-J., Lee, U. & Kang, Y.-B. Methane pyrolysis rate
     measurement using electromagnetic levitation techniques for turquoise
     hydrogen production: liquid In, Ga, Bi, Sn, and Cu as catalysts. Chem. Eng.
     J. 460, 141558 (2023).
     
     Article  CAS  Google Scholar 

 45. Gong, Y. et al. Homoepitaxial diamond grown in a liquid metal solvent.
     ChemRxiv. Preprint at https://doi.org/10.26434/chemrxiv-2022-q8ppf (2022).

 46. Ohtsuka, Y. et al. Theoretical study on the C–H activation of methane by
     liquid metal indium: catalytic activity of small indium clusters. J. Phys.
     Chem. A 123, 8907–8912 (2019).
     
     Article  CAS  PubMed  Google Scholar 

 47. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio
     total-energy calculations using a plane-wave basis set. Phys. Rev. B 54,
     11169–11186 (1996).
     
     Article  ADS  CAS  Google Scholar 

 48. Perdew, J. P., Burke, K. & Ernzerhof, M. Perdew, Burke, and Ernzerhof
     reply. Phys. Rev. Lett. 80, 891 (1998).
     
     Article  ADS  CAS  Google Scholar 

 49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation
     made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
     
     Article  ADS  CAS  PubMed  Google Scholar 

 50. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate
     ab initio parametrization of density functional dispersion correction
     (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
     
     Article  ADS  PubMed  Google Scholar 

 51. Nosé, S. A unified formulation of the constant temperature molecular
     dynamics methods. J. Chem. Phys. 81, 511–519 (1984).
     
     Article  ADS  Google Scholar 

 52. Nose, S. Constant-temperature molecular dynamics. J. Phys. Condens. Matter
     2, SA115 (1990).
     
     Article  ADS  Google Scholar 

 53. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions.
     Phys. Rev. A 31, 1695–1697 (1985).
     
     Article  ADS  CAS  Google Scholar 

 54. Frenkel, D. & Smit, B. Understanding Molecular Simulation: From Algorithms
     to Applications (Academic Press, 1996).

 55. Sharma, B. D. & Donohue, J. A refinement of the crystal structure of
     gallium. Z. Kristallogr. Cryst. Mater. 117, 293–300 (1962).
     
     Article  CAS  Google Scholar 

 56. Assael, M. J. et al. Reference data for the density and viscosity of liquid
     cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc. J.
     Phys. Chem. Ref. Data 41, 033101 (2012).
     
     Article  ADS  Google Scholar 

 57. Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Academic
     Press, 2013).

 58. Yan, G., Da, L. & Rodney, R. Source data for “Growth of diamond in liquid
     metal at 1 atmosphere pressure”. Zenodo
     https://doi.org/10.5281/zenodo.10803625 (2024).

Download references


ACKNOWLEDGEMENTS

This work was supported by the Institute for Basic Science (IBS-R019-D1). We
thank S. Y. Lee for preliminary XRD measurements at the 9C beamline of Pohang
Accelerator Laboratory to evaluate the crystalline property of the diamond
sample, and B. Cunning for suggesting the EDM-3 Poco Graphite sheet material and
for discussions. The experiments at the PLS-II 6D and 9 C beamline were
supported in part by MSIT, POSTECH and UNIST Central Research Facilities. We
thank K.-S. Lee of the UNIST Center Research Facilities for making the TOF-SIMS
measurements. The DFT calculations were conducted on the IBS supercomputer.


AUTHOR INFORMATION

Author notes

 1. Meihui Wang
    
    Present address: State Key Laboratory of Materials Processing and Die &
    Mould Technology, School of Materials Science and Engineering, Huazhong
    University of Science and Technology, Wuhan, China


AUTHORS AND AFFILIATIONS

 1. Center for Multidimensional Carbon Materials (CMCM), Institute for Basic
    Science (IBS), Ulsan, Republic of Korea
    
    Yan Gong, Da Luo, Myeonggi Choe, Yongchul Kim, Babu Ram, Mohammad
    Zafari, Won Kyung Seong, Pavel Bakharev, Meihui Wang, Zonghoon Lee & Rodney
    S. Ruoff

 2. Department of Chemistry, Ulsan National Institute of Science and Technology
    (UNIST), Ulsan, Republic of Korea
    
    Yan Gong, Yongchul Kim, In Kee Park, Geunsik Lee & Rodney S. Ruoff

 3. Department of Materials Science and Engineering, Ulsan National Institute of
    Science and Technology (UNIST), Ulsan, Republic of Korea
    
    Myeonggi Choe, Zonghoon Lee & Rodney S. Ruoff

 4. UNIST Central Research Facilities (UCRF), Ulsan National University of
    Science and Technology (UNIST), Ulsan, Republic of Korea
    
    Seulyi Lee

 5. Graduate School of Semiconductor Materials and Devices Engineering, Ulsan
    National University of Science and Technology (UNIST), Ulsan, Republic of
    Korea
    
    Tae Joo Shin

 6. School of Energy and Chemical Engineering, Ulsan National Institute of
    Science and Technology (UNIST), Ulsan, Republic of Korea
    
    Rodney S. Ruoff

Authors
 1.  Yan Gong
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 2.  Da Luo
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 3.  Myeonggi Choe
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 4.  Yongchul Kim
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 5.  Babu Ram
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 6.  Mohammad Zafari
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 7.  Won Kyung Seong
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 8.  Pavel Bakharev
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 9.  Meihui Wang
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 10. In Kee Park
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 11. Seulyi Lee
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 12. Tae Joo Shin
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 13. Zonghoon Lee
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 14. Geunsik Lee
     View author publications
     
     You can also search for this author in PubMed Google Scholar

 15. Rodney S. Ruoff
     View author publications
     
     You can also search for this author in PubMed Google Scholar


CONTRIBUTIONS

R.S.R. supervised the project. R.S.R., D.L. and Y.G. conceived the experiments.
Y.G. did the growth experiments. Y.G. and D.L. characterized the diamond
samples. W.K.S. designed, assembled and built, and tested the cold-wall system
and the thermocouple probe array. M.C. and Z.L. took the TEM, STEM, EELS and EDS
measurements. P.B. took the XPS measurements. T.J.S. and S.L. took the XRD
measurements. Y.K., B.R., M.Z., I.K.P. and G.L. performed the theoretical
calculations. M.W. contributed through discussion. Y.G. wrote a draft manuscript
and R.S.R., D.L. and Y.G. revised it. All co-authors commented on the manuscript
before its submission.


CORRESPONDING AUTHORS

Correspondence to Da Luo, Won Kyung Seong or Rodney S. Ruoff.


ETHICS DECLARATIONS


COMPETING INTERESTS

The Institute for Basic Science has filed a patent application (KR
10-2023-0052752) that lists Y.G., D.L. and R.S.R. as inventors. Other than this,
the authors declare no competing interests.


PEER REVIEW


PEER REVIEW INFORMATION

Nature thanks Anirudha Sumant and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work. Peer reviewer reports are
available.


ADDITIONAL INFORMATION

Publisher’s note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.


SUPPLEMENTARY INFORMATION


SUPPLEMENTARY INFORMATION


PEER REVIEW FILE


SUPPLEMENTARY VIDEO 1


SUPPLEMENTARY VIDEO 2


SUPPLEMENTARY VIDEO 3


SUPPLEMENTARY VIDEO 4


SUPPLEMENTARY VIDEO 5


SUPPLEMENTARY VIDEO 6


SUPPLEMENTARY VIDEO 7


SUPPLEMENTARY VIDEO 8


SOURCE DATA


SOURCE DATA FIGS. 2 AND 3


RIGHTS AND PERMISSIONS

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the author(s)
or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing
agreement and applicable law.

Reprints and permissions


ABOUT THIS ARTICLE


CITE THIS ARTICLE

Gong, Y., Luo, D., Choe, M. et al. Growth of diamond in liquid metal at 1 atm
pressure. Nature 629, 348–354 (2024). https://doi.org/10.1038/s41586-024-07339-7

Download citation

 * Received: 12 May 2023

 * Accepted: 20 March 2024

 * Published: 24 April 2024

 * Issue Date: 09 May 2024

 * DOI: https://doi.org/10.1038/s41586-024-07339-7


SHARE THIS ARTICLE

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.



Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative


SUBJECTS

 * Materials chemistry
 * Structural materials
 * Synthesis and processing


COMMENTS

By submitting a comment you agree to abide by our Terms and Community
Guidelines. If you find something abusive or that does not comply with our terms
or guidelines please flag it as inappropriate.


Access through your institution
Buy or subscribe

Access through your institution
Change institution
Buy or subscribe
 * Sections
 * Figures
 * References

 * Abstract
 * Data availability
 * References
 * Acknowledgements
 * Author information
 * Ethics declarations
 * Peer review
 * Additional information
 * Supplementary information
 * Source data
 * Rights and permissions
 * About this article
 * Comments

Advertisement


 * Fig. 1: Synthesis of diamond on a liquid metal surface that is at an
   interface with graphite.
   
   

 * Fig. 2: Characterization of 13C-labelled as-grown diamond.
   
   

 * Fig. 3: TEM data of cross-sectional samples prepared by SEM-FIB.
   
   

 1.  Haggerty, S. E. Diamond genesis in a multiply-constrained model. Nature
     320, 34–38 (1986).
     
     Article ADS CAS  Google Scholar 

 2.  Pal’yanov, Y. N., Sokol, A. G., Borzdov, Y. M., Khokhryakov, A. F. &
     Sobolev, N. V. Diamond formation from mantle carbonate fluids. Nature 400,
     417–418 (1999).
     
     Article ADS  Google Scholar 

 3.  Bundy, F. P. et al. The pressure-temperature phase and transformation
     diagram for carbon; updated through 1994. Carbon 34, 141–153 (1996).
     
     Article CAS  Google Scholar 

 4.  Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorfjun, R. H. Man-made
     diamonds. Nature 176, 51–55 (1955).
     
     Article ADS CAS  Google Scholar 

 5.  Bovenkerk, H. P., Bundy, F. P., Hall, H. T., Strong, H. M. & Wentorf, R. H.
     Preparation of diamond. Nature 184, 1094–1098 (1959).
     
     Article ADS CAS  Google Scholar 

 6.  Hazen, R. M. & Hazen, R. M. The Diamond Makers (Cambridge Univ. Press,
     1999).

 7.  D’Haenens-Johansson, U. F. S., Butler, J. E. & Katrusha, A. N. Synthesis of
     diamonds and their identification. Rev. Mineral. Geochem. 88, 689–753
     (2022).
     
     Article  Google Scholar 

 8.  Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys.
     Rep. 528, 1–45 (2013).
     
     Article ADS CAS  Google Scholar 

 9.  Ruf, M., Wan, N. H., Choi, H., Englund, D. & Hanson, R. Quantum networks
     based on color centers in diamond. J. Appl. Phys. 130, 070901 (2021).
     
     Article ADS CAS  Google Scholar 

 10. Shikata, S. Single crystal diamond wafers for high power electronics. Diam.
     Relat. Mater. 65, 168–175 (2016).
     
     Article ADS CAS  Google Scholar 

 11. Railkar, T. A. et al. A Critical Review of Chemical Vapor-Deposited (CVD)
     Diamond for Electronic Applications. Crit. Rev. Solid State Mater. Sci. 25,
     163–277 (2000).
     
     Article ADS CAS  Google Scholar 

 12. Butler, J. E., Mankelevich, Y. A., Cheesman, A., Ma, J. & Ashfold, M. N. R.
     Understanding the chemical vapor deposition of diamond: recent progress. J.
     Phys. Condens. Matter 21, 364201 (2009).
     
     Article CAS PubMed  Google Scholar 

 13. Yamasaki, S., Pobedinskas, P. & Nicley, S. S. Recent advances in diamond
     science and technology. Phys. Status Solidi A 214, 1770167 (2017).
     
     Article  Google Scholar 

 14. Yarbrough, W. A. & Messier, R. J. S. Current issues and problems in the
     chemical vapor deposition of diamond. Science 247, 688–696 (1990).
     
     Article ADS CAS PubMed  Google Scholar 

 15. Butler, J. E. & Windischmann, H. Developments in CVD-diamond synthesis
     during the past decade. MRS Bull. 23, 22–27 (1998).
     
     Article CAS  Google Scholar 

 16. Schwander, M. & Partes, K. J. D. A review of diamond synthesis by CVD
     processes. Diam. Relat. Mater. 20, 1287–1301 (2011).
     
     Article ADS CAS  Google Scholar 

 17. Linde, O., Geyler, O. & Epstein, A. The Global Diamond Industry 2018: A
     Resilient Industry Shines Through (Bain, 2018).

 18. Dossa, S. S. et al. Analysis of the high-pressure high-temperature (HPHT)
     growth of single crystal diamond. J. Cryst. Growth 609, 127150 (2023).
     
     Article CAS  Google Scholar 

 19. Ferro, S. Synthesis of diamond. J. Mater. Chem. 12, 2843–2855 (2002).
     
     Article CAS  Google Scholar 

 20. Eaton-Magaña, S., Shigley, J. E. & Breeding, C. M. Observations on
     HPHT-grown synthetic diamonds: a review. Gems Gemol. 53, 262–284 (2017).
     
     Article  Google Scholar 

 21. Sumiya, H., Harano, K. & Tamasaku, K. HPHT synthesis and crystalline
     quality of large high-quality (001) and (111) diamond crystals. Diam.
     Relat. Mater. 58, 221–225 (2015).
     
     Article ADS CAS  Google Scholar 

 22. Kalantar-Zadeh, K. et al. Emergence of liquid metals in nanotechnology. ACS
     Nano 13, 7388–7395 (2019).
     
     Article CAS PubMed  Google Scholar 

 23. Taccardi, N. et al. Gallium-rich Pd–Ga phases as supported liquid metal
     catalysts. Nat. Chem. 9, 862–867 (2017).
     
     Article CAS PubMed  Google Scholar 

 24. Daeneke, T. et al. Liquid metals: fundamentals and applications in
     chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018).
     
     Article CAS PubMed  Google Scholar 

 25. Camacho-Mojica, D. C. et al. Charge transfer during the dissociation of H2
     and the charge state of H atoms in liquid gallium. J. Phys. Chem. C 123,
     26769–26776 (2019).
     
     Article CAS  Google Scholar 

 26. Ueki, R. et al. In-situ observation of surface graphitization of gallium
     droplet and concentration of carbon in liquid gallium. Jpn. J. Appl. Phys.
     51, 06FD28 (2012).
     
     Article  Google Scholar 

 27. Fujita, J.-I. et al. Near room temperature chemical vapor deposition of
     graphene with diluted methane and molten gallium catalyst. Sci. Rep. 7,
     12371 (2017).
     
     Article ADS PubMed PubMed Central  Google Scholar 

 28. Upham, D. C. et al. Catalytic molten metals for the direct conversion of
     methane to hydrogen and separable carbon. Science 358, 917–921 (2017).
     
     Article ADS MathSciNet CAS PubMed  Google Scholar 

 29. Allioux, F.-M. et al. Carbonization of low thermal stability polymers at
     the interface of liquid metals. Carbon 171, 938–945 (2021).
     
     Article CAS  Google Scholar 

 30. Kawasaki, H. et al. A liquid metal catalyst for the conversion of ethanol
     into graphitic carbon layers under an ultrasonic cavitation field. Chem.
     Commun. 58, 7741–7744 (2022).
     
     Article CAS  Google Scholar 

 31. Zuraiqi, K. et al. Direct conversion of CO2 to solid carbon by Ga-based
     liquid metals. Energy Environ. Sci. 15, 595–600 (2022).
     
     Article CAS  Google Scholar 

 32. Li, P. C. Preparation of single-crystal graphite from melts. Nature 192,
     864–865 (1961).
     
     Article ADS CAS  Google Scholar 

 33. Tulloch, H. J. C. & Young, D. A. Synthetic single crystals of graphite.
     Nature 211, 730–731 (1966).
     
     Article ADS  Google Scholar 

 34. Sumiyoshi, Y., Ushio, M. & Suzuki, S. Formation of graphite single crystal
     from iron solution by the slow cooling method. Bull. Chem. Soc. Jpn. 61,
     1577–1585 (1988).
     
     Article CAS  Google Scholar 

 35. Noda, T., Sumiyoshi, Y. & Ito, N. Growth of single crystals of graphite
     from a carbon-iron melt. Carbon 6, 813–816 (1968).
     
     Article CAS  Google Scholar 

 36. Austerman, S. B., Myron, S. M. & Wagner, J. W. Growth and characterization
     of graphite single crystals. Carbon 5, 549–557 (1967).
     
     Article CAS  Google Scholar 

 37. Merel, P., Tabbal, M., Chaker, M., Moisa, S. & Margot, J. Direct evaluation
     of the sp3 content in diamond-like-carbon films by XPS. Appl. Surf. Sci.
     136, 105–110 (1998).
     
     Article ADS CAS  Google Scholar 

 38. Chu, C., d’Evelyn, M., Hauge, R. & Margrave, J. Mechanism of diamond growth
     by chemical vapor deposition on diamond (100), (111), and (110) surfaces:
     carbon-13 studies. J. Appl. Phys. 70, 1695–1705 (1991).
     
     Article ADS CAS  Google Scholar 

 39. Cai, W. et al. Synthesis and solid-state NMR structural characterization of
     13C-labeled graphite oxide. Science 321, 1815–1817 (2008).
     
     Article ADS CAS PubMed  Google Scholar 

 40. Yang, B. et al. Fabrication of silicon-vacancy color centers in diamond
     films: tetramethylsilane as a new dopant source. CrystEngComm 20, 1158–1167
     (2018).
     
     Article CAS  Google Scholar 

 41. Feng, Z., Lin, Y., Tian, C., Hu, H. & Su, D. Combined study of the ground
     and excited states in the transformation of nanodiamonds into carbon onions
     by electron energy-loss spectroscopy. Sci. Rep. 9, 3784 (2019).
     
     Article ADS PubMed PubMed Central  Google Scholar 

 42. Luo, K. et al. Coherent interfaces govern direct transformation from
     graphite to diamond. Nature 607, 486–491 (2022).
     
     Article ADS CAS PubMed PubMed Central  Google Scholar 

 43. Tulić, S. et al. Covalent diamond–graphite bonding: mechanism of catalytic
     transformation. ACS Nano 13, 4621–4630 (2019).
     
     Article PubMed PubMed Central  Google Scholar 

 44. Wi, T.-G., Park, Y.-J., Lee, U. & Kang, Y.-B. Methane pyrolysis rate
     measurement using electromagnetic levitation techniques for turquoise
     hydrogen production: liquid In, Ga, Bi, Sn, and Cu as catalysts. Chem. Eng.
     J. 460, 141558 (2023).
     
     Article CAS  Google Scholar 

 45. Gong, Y. et al. Homoepitaxial diamond grown in a liquid metal solvent.
     ChemRxiv. Preprint at https://doi.org/10.26434/chemrxiv-2022-q8ppf (2022).

 46. Ohtsuka, Y. et al. Theoretical study on the C–H activation of methane by
     liquid metal indium: catalytic activity of small indium clusters. J. Phys.
     Chem. A 123, 8907–8912 (2019).
     
     Article CAS PubMed  Google Scholar 

 47. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio
     total-energy calculations using a plane-wave basis set. Phys. Rev. B 54,
     11169–11186 (1996).
     
     Article ADS CAS  Google Scholar 

 48. Perdew, J. P., Burke, K. & Ernzerhof, M. Perdew, Burke, and Ernzerhof
     reply. Phys. Rev. Lett. 80, 891 (1998).
     
     Article ADS CAS  Google Scholar 

 49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation
     made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
     
     Article ADS CAS PubMed  Google Scholar 

 50. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate
     ab initio parametrization of density functional dispersion correction
     (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
     
     Article ADS PubMed  Google Scholar 

 51. Nosé, S. A unified formulation of the constant temperature molecular
     dynamics methods. J. Chem. Phys. 81, 511–519 (1984).
     
     Article ADS  Google Scholar 

 52. Nose, S. Constant-temperature molecular dynamics. J. Phys. Condens. Matter
     2, SA115 (1990).
     
     Article ADS  Google Scholar 

 53. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions.
     Phys. Rev. A 31, 1695–1697 (1985).
     
     Article ADS CAS  Google Scholar 

 54. Frenkel, D. & Smit, B. Understanding Molecular Simulation: From Algorithms
     to Applications (Academic Press, 1996).

 55. Sharma, B. D. & Donohue, J. A refinement of the crystal structure of
     gallium. Z. Kristallogr. Cryst. Mater. 117, 293–300 (1962).
     
     Article CAS  Google Scholar 

 56. Assael, M. J. et al. Reference data for the density and viscosity of liquid
     cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc. J.
     Phys. Chem. Ref. Data 41, 033101 (2012).
     
     Article ADS  Google Scholar 

 57. Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Academic
     Press, 2013).

 58. Yan, G., Da, L. & Rodney, R. Source data for “Growth of diamond in liquid
     metal at 1 atmosphere pressure”. Zenodo
     https://doi.org/10.5281/zenodo.10803625 (2024).

Nature (Nature) ISSN 1476-4687 (online) ISSN 0028-0836 (print)


NATURE.COM SITEMAP


ABOUT NATURE PORTFOLIO

 * About us
 * Press releases
 * Press office
 * Contact us


DISCOVER CONTENT

 * Journals A-Z
 * Articles by subject
 * protocols.io
 * Nature Index


PUBLISHING POLICIES

 * Nature portfolio policies
 * Open access


AUTHOR & RESEARCHER SERVICES

 * Reprints & permissions
 * Research data
 * Language editing
 * Scientific editing
 * Nature Masterclasses
 * Research Solutions


LIBRARIES & INSTITUTIONS

 * Librarian service & tools
 * Librarian portal
 * Open research
 * Recommend to library


ADVERTISING & PARTNERSHIPS

 * Advertising
 * Partnerships & Services
 * Media kits
 * Branded content


PROFESSIONAL DEVELOPMENT

 * Nature Careers
 * Nature Conferences


REGIONAL WEBSITES

 * Nature Africa
 * Nature China
 * Nature India
 * Nature Italy
 * Nature Japan
 * Nature Middle East

 * Privacy Policy
 * Use of cookies
 * Your privacy choices/Manage cookies
 * Legal notice
 * Accessibility statement
 * Terms & Conditions
 * Your US state privacy rights
 * Cancel contracts here

© 2024 Springer Nature Limited


Close banner Close

Sign up for the Nature Briefing newsletter — what matters in science, free to
your inbox daily.

Email address
Sign up
I agree my information will be processed in accordance with the Nature and
Springer Nature Limited Privacy Policy.
Close banner Close
Get the most important science stories of the day, free in your inbox. Sign up
for Nature Briefing